These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
| Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
| 2.2.8.36b10.23 |
$( x^{2} + x + 1 )^{8} + \left(4 x + 2\right) ( x^{2} + x + 1 )^{7} + 2 x ( x^{2} + x + 1 )^{6} + 2 ( x^{2} + x + 1 )^{4} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{3} + 6$ |
$C_2^3.C_2\wr C_4$ (as 16T914) |
$512$ |
$2$ |
$[2, 2, 2, 2, \frac{5}{2}, 3]^{8}$ |
$[1,1,1,1,\frac{3}{2},2]^{8}$ |
$[2,2,\frac{5}{2}]^{4}$ |
$[1,1,\frac{3}{2}]^{4}$ |
$[11, 6, 4, 0]$ |
$[2, 1]$ |
$z^6 + z^2 + t,t z + (t + 1)$ |
$[1, 2, 7, 15]$ |
| 2.2.8.36b10.24 |
$( x^{2} + x + 1 )^{8} + 6 ( x^{2} + x + 1 )^{7} + 2 x ( x^{2} + x + 1 )^{6} + 2 ( x^{2} + x + 1 )^{4} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{3} + 6$ |
$C_2^3.C_2\wr C_4$ (as 16T914) |
$512$ |
$2$ |
$[2, 2, 2, 2, \frac{5}{2}, 3]^{8}$ |
$[1,1,1,1,\frac{3}{2},2]^{8}$ |
$[2,2,\frac{5}{2}]^{4}$ |
$[1,1,\frac{3}{2}]^{4}$ |
$[11, 6, 4, 0]$ |
$[2, 1]$ |
$z^6 + z^2 + t,t z + (t + 1)$ |
$[1, 2, 7, 15]$ |
| 2.2.8.36b10.36 |
$( x^{2} + x + 1 )^{8} + \left(4 x + 2\right) ( x^{2} + x + 1 )^{7} + 2 x ( x^{2} + x + 1 )^{6} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{5} + 2 ( x^{2} + x + 1 )^{4} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{3} + 6$ |
$Q_8^2:C_8$ (as 16T929) |
$512$ |
$4$ |
$[2, 2, 2, 2, \frac{5}{2}, 3]^{8}$ |
$[1,1,1,1,\frac{3}{2},2]^{8}$ |
$[2,2,\frac{5}{2}]^{4}$ |
$[1,1,\frac{3}{2}]^{4}$ |
$[11, 6, 4, 0]$ |
$[2, 1]$ |
$z^6 + z^2 + t,t z + (t + 1)$ |
$[1, 2, 7, 15]$ |
| 2.2.8.36b10.37 |
$( x^{2} + x + 1 )^{8} + \left(4 x + 2\right) ( x^{2} + x + 1 )^{7} + 2 x ( x^{2} + x + 1 )^{6} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{5} + 2 ( x^{2} + x + 1 )^{4} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{3} + 8 x + 6$ |
$Q_8^2:C_8$ (as 16T929) |
$512$ |
$4$ |
$[2, 2, 2, 2, \frac{5}{2}, 3]^{8}$ |
$[1,1,1,1,\frac{3}{2},2]^{8}$ |
$[2,2,\frac{5}{2}]^{4}$ |
$[1,1,\frac{3}{2}]^{4}$ |
$[11, 6, 4, 0]$ |
$[2, 1]$ |
$z^6 + z^2 + t,t z + (t + 1)$ |
$[1, 2, 7, 15]$ |
| 2.2.8.36b10.38 |
$( x^{2} + x + 1 )^{8} + 6 ( x^{2} + x + 1 )^{7} + 2 x ( x^{2} + x + 1 )^{6} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{5} + 2 ( x^{2} + x + 1 )^{4} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{3} + 6$ |
$Q_8^2:C_8$ (as 16T929) |
$512$ |
$4$ |
$[2, 2, 2, 2, \frac{5}{2}, 3]^{8}$ |
$[1,1,1,1,\frac{3}{2},2]^{8}$ |
$[2,2,\frac{5}{2}]^{4}$ |
$[1,1,\frac{3}{2}]^{4}$ |
$[11, 6, 4, 0]$ |
$[2, 1]$ |
$z^6 + z^2 + t,t z + (t + 1)$ |
$[1, 2, 7, 15]$ |
| 2.2.8.36b10.39 |
$( x^{2} + x + 1 )^{8} + 6 ( x^{2} + x + 1 )^{7} + 2 x ( x^{2} + x + 1 )^{6} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{5} + 2 ( x^{2} + x + 1 )^{4} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{3} + 8 x + 6$ |
$Q_8^2:C_8$ (as 16T929) |
$512$ |
$4$ |
$[2, 2, 2, 2, \frac{5}{2}, 3]^{8}$ |
$[1,1,1,1,\frac{3}{2},2]^{8}$ |
$[2,2,\frac{5}{2}]^{4}$ |
$[1,1,\frac{3}{2}]^{4}$ |
$[11, 6, 4, 0]$ |
$[2, 1]$ |
$z^6 + z^2 + t,t z + (t + 1)$ |
$[1, 2, 7, 15]$ |