Defining polynomial over unramified subextension
$x^{3} + 2d_{0}$ |
Invariants
Residue field characteristic: | $2$ |
Degree: | $6$ |
Base field: | $\Q_{2}$ |
Ramification index $e$: | $3$ |
Residue field degree $f$: | $2$ |
Discriminant exponent $c$: | $4$ |
Artin slopes: | $[\ ]$ |
Swan slopes: | $[\ ]$ |
Means: | $\langle\ \rangle$ |
Rams: | $(\ )$ |
Field count: | $2$ (complete) |
Ambiguity: | $6$ |
Mass: | $1$ |
Absolute Mass: | $1/2$ |
Varying
Indices of inseparability: | $[0]$ |
Associated inertia: | $[1]$ |
Jump Set: | $[3]$ |
Galois groups and Hidden Artin slopes
Select desired size of Galois group.
Fields
Showing all 2
Download displayed columns for resultsLabel | Polynomial | Galois group | Galois degree | $\#\Aut(K/\Q_p)$ | Hidden Artin slopes | Ind. of Insep. | Assoc. Inertia | Jump Set |
---|---|---|---|---|---|---|---|---|
2.2.3.4a1.1 | $( x^{2} + x + 1 )^{3} + 2 x$ | $S_3\times C_3$ (as 6T5) | $18$ | $3$ | $[\ ]^{3}$ | $[0]$ | $[1]$ | $[3]$ |
2.2.3.4a1.2 | $( x^{2} + x + 1 )^{3} + 2$ | $S_3$ (as 6T2) | $6$ | $6$ | $[\ ]$ | $[0]$ | $[1]$ | $[3]$ |