Properties

Label 2.2.3.4a
Base 2.1.1.0a1.1
Degree \(6\)
e \(3\)
f \(2\)
c \(4\)

Related objects

Downloads

Learn more

Defining polynomial over unramified subextension

$x^{3} + 2d_{0}$

Invariants

Residue field characteristic: $2$
Degree: $6$
Base field: $\Q_{2}$
Ramification index $e$: $3$
Residue field degree $f$: $2$
Discriminant exponent $c$: $4$
Artin slopes: $[\ ]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $2$ (complete)
Ambiguity: $6$
Mass: $1$
Absolute Mass: $1/2$

Varying

Indices of inseparability: $[0]$
Associated inertia: $[1]$
Jump Set: $[3]$

Galois groups and Hidden Artin slopes

Select desired size of Galois group.

Fields


Showing all 2

  displayed columns for results
Label Packet size Polynomial Galois group Galois degree $\#\Aut(K/\Q_p)$ Artin slope content Swan slope content Hidden Artin slopes Hidden Swan slopes Ind. of Insep. Assoc. Inertia Resid. Poly Jump Set
2.2.3.4a1.1 $( x^{2} + x + 1 )^{3} + 2 x$ $S_3\times C_3$ (as 6T5) $18$ $3$ $[\ ]_{3}^{6}$ $[\ ]_{3}^{6}$ $[\ ]^{3}$ $[\ ]^{3}$ $[0]$ $[1]$ $z^2 + z + 1$ $[3]$
2.2.3.4a1.2 $( x^{2} + x + 1 )^{3} + 2$ $S_3$ (as 6T2) $6$ $6$ $[\ ]_{3}^{2}$ $[\ ]_{3}^{2}$ $[\ ]$ $[\ ]$ $[0]$ $[1]$ $z^2 + z + 1$ $[3]$
  displayed columns for results