These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
    | Galois group: | $C_2^6:S_4$ (show 8), $C_2^6.A_4\wr C_2$ (show 16) (incomplete) | 
  | Hidden Artin slopes: | not computed (show 14), $[\frac{4}{3},\frac{4}{3},2,\frac{8}{3},\frac{8}{3}]_{3}$ (show 4), $[\frac{4}{3},\frac{4}{3},\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{3}_{3}$ (show 2), $[\frac{4}{3},\frac{4}{3},2,\frac{7}{3},\frac{7}{3}]_{3}$ (show 4) (incomplete) | 
    | Indices of inseparability: | $[15,14,8,0]$ (show 18), $[15,15,8,0]$ (show 6) | 
  | Associated inertia: | $[1,1]$ | 
  | Jump Set: | $[1,3,7,15]$ | 
 
  
          
                  | Label | Polynomial $/ \Q_p$ | Galois group $/ \Q_p$ | Galois degree $/ \Q_p$ | $\#\Aut(K/\Q_p)$ | Artin slope content $/ \Q_p$ | Swan slope content $/ \Q_p$ | Hidden Artin slopes $/ \Q_p$ | Hidden Swan slopes $/ \Q_p$ | Ind. of Insep. $/ \Q_p$ | Assoc. Inertia $/ \Q_p$ | Resid. Poly | Jump Set | 
      
      
              | 2.2.8.44c1.19 | $( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 4 ( x^{2} + x + 1 )^{5} + 4 x ( x^{2} + x + 1 )^{4} + 8 x + 2$ | $C_2^6:S_4$ (as 16T1315) | $1536$ | $1$ | $[\frac{4}{3}, \frac{4}{3}, 2, \frac{7}{3}, \frac{7}{3}, 3, \frac{19}{6}, \frac{19}{6}]_{3}^{2}$ | $[\frac{1}{3},\frac{1}{3},1,\frac{4}{3},\frac{4}{3},2,\frac{13}{6},\frac{13}{6}]_{3}^{2}$ | $[\frac{4}{3},\frac{4}{3},2,\frac{7}{3},\frac{7}{3}]_{3}$ | $[\frac{1}{3},\frac{1}{3},1,\frac{4}{3},\frac{4}{3}]_{3}$ | $[15, 15, 8, 0]$ | $[1, 1]$ | $z^4 + 1,z + 1$ | $[1, 3, 7, 15]$ | 
      
              | 2.2.8.44c1.35 | $( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{6} + 4 ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 x + 2$ | $C_2^6:S_4$ (as 16T1315) | $1536$ | $1$ | $[\frac{4}{3}, \frac{4}{3}, 2, \frac{7}{3}, \frac{7}{3}, 3, \frac{19}{6}, \frac{19}{6}]_{3}^{2}$ | $[\frac{1}{3},\frac{1}{3},1,\frac{4}{3},\frac{4}{3},2,\frac{13}{6},\frac{13}{6}]_{3}^{2}$ | $[\frac{4}{3},\frac{4}{3},2,\frac{7}{3},\frac{7}{3}]_{3}$ | $[\frac{1}{3},\frac{1}{3},1,\frac{4}{3},\frac{4}{3}]_{3}$ | $[15, 15, 8, 0]$ | $[1, 1]$ | $z^4 + 1,z + 1$ | $[1, 3, 7, 15]$ | 
      
              | 2.2.8.44c2.3 | $( x^{2} + x + 1 )^{8} + 4 x ( x^{2} + x + 1 )^{7} + 8 x + 2$ | $C_2^6.A_4\wr C_2$ (as 16T1783) | $18432$ | $1$ | not computed | not computed | not computed | not computed | $[15, 15, 8, 0]$ | $[1, 1]$ | $z^4 + 1,z + t$ | $[1, 3, 7, 15]$ | 
      
              | 2.2.8.44c2.4 | $( x^{2} + x + 1 )^{8} + 4 x ( x^{2} + x + 1 )^{7} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ | $C_2^6.A_4\wr C_2$ (as 16T1783) | $18432$ | $1$ | not computed | not computed | not computed | not computed | $[15, 15, 8, 0]$ | $[1, 1]$ | $z^4 + 1,z + t$ | $[1, 3, 7, 15]$ | 
      
              | 2.2.8.44c2.35 | $( x^{2} + x + 1 )^{8} + 4 x ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{4} + 8 x + 2$ | $C_2^6.A_4\wr C_2$ (as 16T1783) | $18432$ | $1$ | not computed | not computed | not computed | not computed | $[15, 15, 8, 0]$ | $[1, 1]$ | $z^4 + 1,z + t$ | $[1, 3, 7, 15]$ | 
      
              | 2.2.8.44c2.36 | $( x^{2} + x + 1 )^{8} + 4 x ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ | $C_2^6.A_4\wr C_2$ (as 16T1783) | $18432$ | $1$ | not computed | not computed | not computed | not computed | $[15, 15, 8, 0]$ | $[1, 1]$ | $z^4 + 1,z + t$ | $[1, 3, 7, 15]$ |