Properties

Label 2.2.2.6a1.4-1.3.2a
Base 2.2.2.6a1.4
Degree \(3\)
e \(3\)
f \(1\)
c \(2\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{3} + \pi$

Invariants

Residue field characteristic: $2$
Degree: $3$
Base field: 2.2.2.6a1.4
Ramification index $e$: $3$
Residue field degree $f$: $1$
Discriminant exponent $c$: $2$
Absolute Artin slopes: $[3]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $3$ (complete)
Ambiguity: $3$
Mass: $1$
Absolute Mass: $1/2$

Varying

These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.

Galois group: $(C_6\times C_2):C_2$ (show 1), $C_6\wr C_2$ (show 2)
Hidden Artin slopes: $[2]^{3}$ (show 2), $[2]$ (show 1)
Indices of inseparability: $[6,0]$
Associated inertia: $[1,1]$
Jump Set: $[3,9]$

Fields


Showing all 3

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
2.2.6.22a1.6 $( x^{2} + x + 1 )^{6} + 4 x ( x^{2} + x + 1 )^{3} + 8 x + 2$ $(C_6\times C_2):C_2$ (as 12T15) $24$ $6$ $[2, 3]_{3}^{2}$ $[1,2]_{3}^{2}$ $[2]$ $[1]$ $[6, 0]$ $[1, 1]$ $z^4 + z^2 + 1,z + 1$ $[3, 9]$
2.2.6.22a2.38 $( x^{2} + x + 1 )^{6} + 4 ( x^{2} + x + 1 )^{5} + 4 ( x^{2} + x + 1 )^{3} + 6 ( x^{2} + x + 1 ) + 2 x + 2$ $C_6\wr C_2$ (as 12T42) $72$ $6$ $[2, 3]_{3}^{6}$ $[1,2]_{3}^{6}$ $[2]^{3}$ $[1]^{3}$ $[6, 0]$ $[1, 1]$ $z^4 + z^2 + 1,z + t$ $[3, 9]$
2.2.6.22a2.42 $( x^{2} + x + 1 )^{6} + 4 ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{3} + 6 ( x^{2} + x + 1 ) + 2 x + 2$ $C_6\wr C_2$ (as 12T42) $72$ $6$ $[2, 3]_{3}^{6}$ $[1,2]_{3}^{6}$ $[2]^{3}$ $[1]^{3}$ $[6, 0]$ $[1, 1]$ $z^4 + z^2 + 1,z + t$ $[3, 9]$
  displayed columns for results