These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
2.2.4.22a1.39 |
$( x^{2} + x + 1 )^{4} + 4 ( x^{2} + x + 1 )^{3} + 4 x ( x^{2} + x + 1 )^{2} + 8 x + 2$ |
$(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T29) |
$64$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4]^{2}$ |
$[1,1,2,\frac{5}{2},3]^{2}$ |
$[2,2,\frac{7}{2}]$ |
$[1,1,\frac{5}{2}]$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + 1,z + 1$ |
$[1, 3, 7]$ |
2.2.4.22a1.40 |
$( x^{2} + x + 1 )^{4} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{3} + 4 x ( x^{2} + x + 1 )^{2} + 8 x + 2$ |
$(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T29) |
$64$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4]^{2}$ |
$[1,1,2,\frac{5}{2},3]^{2}$ |
$[2,2,\frac{7}{2}]$ |
$[1,1,\frac{5}{2}]$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + 1,z + 1$ |
$[1, 3, 7]$ |
2.2.4.22a1.41 |
$( x^{2} + x + 1 )^{4} + 12 ( x^{2} + x + 1 )^{3} + 4 x ( x^{2} + x + 1 )^{2} + 8 x + 2$ |
$(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T29) |
$64$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4]^{2}$ |
$[1,1,2,\frac{5}{2},3]^{2}$ |
$[2,2,\frac{7}{2}]$ |
$[1,1,\frac{5}{2}]$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + 1,z + 1$ |
$[1, 3, 7]$ |
2.2.4.22a1.42 |
$( x^{2} + x + 1 )^{4} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{3} + 4 x ( x^{2} + x + 1 )^{2} + 8 x + 2$ |
$(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T29) |
$64$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4]^{2}$ |
$[1,1,2,\frac{5}{2},3]^{2}$ |
$[2,2,\frac{7}{2}]$ |
$[1,1,\frac{5}{2}]$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + 1,z + 1$ |
$[1, 3, 7]$ |
2.2.4.22a1.43 |
$( x^{2} + x + 1 )^{4} + 4 ( x^{2} + x + 1 )^{3} + 4 x ( x^{2} + x + 1 )^{2} + 8 x ( x^{2} + x + 1 ) + 8 x + 2$ |
$Z_8 : Z_8^\times$ (as 8T15) |
$32$ |
$2$ |
$[2, 2, 3, 4]^{2}$ |
$[1,1,2,3]^{2}$ |
$[2,2]$ |
$[1,1]$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + 1,z + 1$ |
$[1, 3, 7]$ |
2.2.4.22a1.44 |
$( x^{2} + x + 1 )^{4} + 4 ( x^{2} + x + 1 )^{3} + 4 x ( x^{2} + x + 1 )^{2} + 8 x ( x^{2} + x + 1 ) + 24 x + 2$ |
$Z_8 : Z_8^\times$ (as 8T15) |
$32$ |
$2$ |
$[2, 2, 3, 4]^{2}$ |
$[1,1,2,3]^{2}$ |
$[2,2]$ |
$[1,1]$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + 1,z + 1$ |
$[1, 3, 7]$ |
2.2.4.22a1.45 |
$( x^{2} + x + 1 )^{4} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{3} + 4 x ( x^{2} + x + 1 )^{2} + 8 x ( x^{2} + x + 1 ) + 8 x + 2$ |
$Z_8 : Z_8^\times$ (as 8T15) |
$32$ |
$2$ |
$[2, 2, 3, 4]^{2}$ |
$[1,1,2,3]^{2}$ |
$[2,2]$ |
$[1,1]$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + 1,z + 1$ |
$[1, 3, 7]$ |
2.2.4.22a1.46 |
$( x^{2} + x + 1 )^{4} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{3} + 4 x ( x^{2} + x + 1 )^{2} + 8 x ( x^{2} + x + 1 ) + 24 x + 2$ |
$Z_8 : Z_8^\times$ (as 8T15) |
$32$ |
$2$ |
$[2, 2, 3, 4]^{2}$ |
$[1,1,2,3]^{2}$ |
$[2,2]$ |
$[1,1]$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + 1,z + 1$ |
$[1, 3, 7]$ |
2.2.4.22a1.47 |
$( x^{2} + x + 1 )^{4} + 4 ( x^{2} + x + 1 )^{3} + 4 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T28) |
$64$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4]^{2}$ |
$[1,1,2,\frac{5}{2},3]^{2}$ |
$[2,2,\frac{7}{2}]$ |
$[1,1,\frac{5}{2}]$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + 1,z + 1$ |
$[1, 3, 7]$ |
2.2.4.22a1.48 |
$( x^{2} + x + 1 )^{4} + 12 ( x^{2} + x + 1 )^{3} + 4 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T28) |
$64$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4]^{2}$ |
$[1,1,2,\frac{5}{2},3]^{2}$ |
$[2,2,\frac{7}{2}]$ |
$[1,1,\frac{5}{2}]$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + 1,z + 1$ |
$[1, 3, 7]$ |
2.2.4.22a1.77 |
$( x^{2} + x + 1 )^{4} + 4 ( x^{2} + x + 1 )^{3} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{2} + 8 x ( x^{2} + x + 1 ) + 8 x + 2$ |
$(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T30) |
$64$ |
$2$ |
$[2, 3, 3, 4]^{4}$ |
$[1,2,2,3]^{4}$ |
$[2,3]^{2}$ |
$[1,2]^{2}$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + 1,z + 1$ |
$[1, 3, 7]$ |
2.2.4.22a1.78 |
$( x^{2} + x + 1 )^{4} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{3} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{2} + 8 x ( x^{2} + x + 1 ) + 8 x + 2$ |
$(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T30) |
$64$ |
$2$ |
$[2, 3, 3, 4]^{4}$ |
$[1,2,2,3]^{4}$ |
$[2,3]^{2}$ |
$[1,2]^{2}$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + 1,z + 1$ |
$[1, 3, 7]$ |
2.2.4.22a1.79 |
$( x^{2} + x + 1 )^{4} + 12 ( x^{2} + x + 1 )^{3} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{2} + 8 x ( x^{2} + x + 1 ) + 8 x + 2$ |
$(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T30) |
$64$ |
$2$ |
$[2, 3, 3, 4]^{4}$ |
$[1,2,2,3]^{4}$ |
$[2,3]^{2}$ |
$[1,2]^{2}$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + 1,z + 1$ |
$[1, 3, 7]$ |
2.2.4.22a1.80 |
$( x^{2} + x + 1 )^{4} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{3} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{2} + 8 x ( x^{2} + x + 1 ) + 8 x + 2$ |
$(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T30) |
$64$ |
$2$ |
$[2, 3, 3, 4]^{4}$ |
$[1,2,2,3]^{4}$ |
$[2,3]^{2}$ |
$[1,2]^{2}$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + 1,z + 1$ |
$[1, 3, 7]$ |
2.2.4.22a1.81 |
$( x^{2} + x + 1 )^{4} + 4 ( x^{2} + x + 1 )^{3} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T28) |
$64$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4]^{2}$ |
$[1,1,2,\frac{5}{2},3]^{2}$ |
$[2,2,\frac{7}{2}]$ |
$[1,1,\frac{5}{2}]$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + 1,z + 1$ |
$[1, 3, 7]$ |
2.2.4.22a1.82 |
$( x^{2} + x + 1 )^{4} + 12 ( x^{2} + x + 1 )^{3} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T28) |
$64$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4]^{2}$ |
$[1,1,2,\frac{5}{2},3]^{2}$ |
$[2,2,\frac{7}{2}]$ |
$[1,1,\frac{5}{2}]$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + 1,z + 1$ |
$[1, 3, 7]$ |