Invariants
Residue field characteristic: | $2$ |
Degree: | $2$ |
Base field: | 2.2.2.4a2.2 |
Ramification index $e$: | $1$ |
Residue field degree $f$: | $2$ |
Discriminant exponent $c$: | $0$ |
Absolute Artin slopes: | $[2]$ |
Swan slopes: | $[\ ]$ |
Means: | $\langle\ \rangle$ |
Rams: | $(\ )$ |
Field count: | $1$ (complete) |
Ambiguity: | $2$ |
Mass: | $1$ |
Absolute Mass: | $1/4$ |
Varying
These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
Galois group: | $C_2^2:C_4$ |
Hidden Artin slopes: | $[2]$ |
Indices of inseparability: | $[1,0]$ |
Associated inertia: | $[1]$ |
Jump Set: | $[1,3]$ |
Fields
Showing all 1
Download displayed columns for resultsLabel | Polynomial $/ \Q_p$ | Galois group $/ \Q_p$ | Galois degree $/ \Q_p$ | $\#\Aut(K/\Q_p)$ | Hidden Artin slopes $/ \Q_p$ | Ind. of Insep. $/ \Q_p$ | Assoc. Inertia $/ \Q_p$ | Jump Set |
---|---|---|---|---|---|---|---|---|
2.4.2.8a3.1 | $( x^{4} + x + 1 )^{2} + \left(2 x^{2} + 2 x\right) ( x^{4} + x + 1 ) + 2$ | $C_2^2:C_4$ (as 8T10) | $16$ | $4$ | $[2]$ | $[1, 0]$ | $[1]$ | $[1, 3]$ |