Properties

Label 2.2.2.4a2.2-2.1.0a
Base 2.2.2.4a2.2
Degree \(2\)
e \(1\)
f \(2\)
c \(0\)

Related objects

Downloads

Learn more

Invariants

Residue field characteristic: $2$
Degree: $2$
Base field: 2.2.2.4a2.2
Ramification index $e$: $1$
Residue field degree $f$: $2$
Discriminant exponent $c$: $0$
Absolute Artin slopes: $[2]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $1$ (complete)
Ambiguity: $2$
Mass: $1$
Absolute Mass: $1/4$

Varying

These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.

Galois group: $C_2^2:C_4$
Hidden Artin slopes: $[2]$
Indices of inseparability: $[1,0]$
Associated inertia: $[1]$
Jump Set: $[1,3]$

Fields


Showing all 1

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
2.4.2.8a3.1 $( x^{4} + x + 1 )^{2} + \left(2 x^{2} + 2 x\right) ( x^{4} + x + 1 ) + 2$ $C_2^2:C_4$ (as 8T10) $16$ $4$ $[2, 2]^{4}$ $[1,1]^{4}$ $[2]$ $[1]$ $[1, 0]$ $[1]$ $z + (t^2 + t)$ $[1, 3]$
  displayed columns for results