Invariants
Residue field characteristic: | $2$ |
Degree: | $11$ |
Base field: | $\Q_{2}(\sqrt{5})$ |
Ramification index $e$: | $1$ |
Residue field degree $f$: | $11$ |
Discriminant exponent $c$: | $0$ |
Absolute Artin slopes: | $[\ ]$ |
Swan slopes: | $[\ ]$ |
Means: | $\langle\ \rangle$ |
Rams: | $(\ )$ |
Field count: | $1$ (complete) |
Ambiguity: | $11$ |
Mass: | $1$ |
Absolute Mass: | $1/22$ |
Varying
These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
Galois group: | $C_{22}$ |
Hidden Artin slopes: | $[\ ]$ |
Indices of inseparability: | $[0]$ |
Associated inertia: | $[\ ]$ |
Jump Set: | $[1]$ |
Fields
Showing all 1
Download displayed columns for resultsLabel | Polynomial $/ \Q_p$ | Galois group $/ \Q_p$ | Galois degree $/ \Q_p$ | $\#\Aut(K/\Q_p)$ | Hidden Artin slopes $/ \Q_p$ | Ind. of Insep. $/ \Q_p$ | Assoc. Inertia $/ \Q_p$ | Jump Set |
---|---|---|---|---|---|---|---|---|
2.22.1.0a1.1 | $x^{22} + x^{12} + x^{11} + x^{10} + x^{9} + x^{8} + x^{6} + x^{5} + 1$ | $C_{22}$ (as 22T1) | $22$ | $22$ | $[\ ]$ | $[0]$ | $[\ ]$ | $[1]$ |