Defining polynomial
| $x^{4} + a_{11} \pi^{3} x^{3} + \left(b_{14} \pi^{4} + b_{10} \pi^{3}\right) x^{2} + b_{13} \pi^{4} x + \pi$ | 
Invariants
| Residue field characteristic: | $2$ | 
| Degree: | $4$ | 
| Base field: | 2.1.8.31a1.89 | 
| Ramification index $e$: | $4$ | 
| Residue field degree $f$: | $1$ | 
| Discriminant exponent $c$: | $14$ | 
| Absolute Artin slopes: | $[3,\frac{23}{6},\frac{23}{6},4,5]$ | 
| Swan slopes: | $[\frac{11}{3},\frac{11}{3}]$ | 
| Means: | $\langle\frac{11}{6},\frac{11}{4}\rangle$ | 
| Rams: | $(\frac{11}{3},\frac{11}{3})$ | 
| Field count: | $0$ (incomplete) | 
| Ambiguity: | $1$ | 
| Mass: | $8$ | 
| Absolute Mass: | $4$ ($0$ currently in the LMFDB) | 
Diagrams
The LMFDB does not contain any fields from this family.
