These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
| Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
| 2.1.16.74c1.4697 |
$x^{16} + 16 x^{13} + 8 x^{12} + 16 x^{11} + 4 x^{8} + 16 x^{6} + 34$ |
$C_2^6:C_8$ (as 16T817) |
$512$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, 5, \frac{41}{8}, \frac{43}{8}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},4,\frac{33}{8},\frac{35}{8}]$ |
$[2,\frac{7}{2},\frac{17}{4},\frac{19}{4},\frac{41}{8}]$ |
$[1,\frac{5}{2},\frac{13}{4},\frac{15}{4},\frac{33}{8}]$ |
$[59, 48, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.74c1.4698 |
$x^{16} + 16 x^{13} + 8 x^{12} + 16 x^{11} + 4 x^{8} + 48 x^{6} + 34$ |
$C_2^6:C_8$ (as 16T817) |
$512$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, 5, \frac{41}{8}, \frac{43}{8}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},4,\frac{33}{8},\frac{35}{8}]$ |
$[2,\frac{7}{2},\frac{17}{4},\frac{19}{4},\frac{41}{8}]$ |
$[1,\frac{5}{2},\frac{13}{4},\frac{15}{4},\frac{33}{8}]$ |
$[59, 48, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.74c1.4708 |
$x^{16} + 16 x^{15} + 16 x^{14} + 16 x^{13} + 8 x^{12} + 16 x^{11} + 4 x^{8} + 16 x^{6} + 34$ |
$C_2^6:C_8$ (as 16T817) |
$512$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, 5, \frac{41}{8}, \frac{43}{8}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},4,\frac{33}{8},\frac{35}{8}]$ |
$[2,\frac{7}{2},\frac{17}{4},\frac{19}{4},\frac{41}{8}]$ |
$[1,\frac{5}{2},\frac{13}{4},\frac{15}{4},\frac{33}{8}]$ |
$[59, 48, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.74c1.4713 |
$x^{16} + 8 x^{12} + 16 x^{11} + 16 x^{10} + 4 x^{8} + 16 x^{6} + 34$ |
$C_2^6:C_8$ (as 16T817) |
$512$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, 5, \frac{41}{8}, \frac{43}{8}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},4,\frac{33}{8},\frac{35}{8}]$ |
$[2,\frac{7}{2},\frac{17}{4},\frac{19}{4},\frac{41}{8}]$ |
$[1,\frac{5}{2},\frac{13}{4},\frac{15}{4},\frac{33}{8}]$ |
$[59, 48, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.74c1.4714 |
$x^{16} + 8 x^{12} + 16 x^{11} + 16 x^{10} + 4 x^{8} + 48 x^{6} + 34$ |
$C_2^6:C_8$ (as 16T817) |
$512$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, 5, \frac{41}{8}, \frac{43}{8}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},4,\frac{33}{8},\frac{35}{8}]$ |
$[2,\frac{7}{2},\frac{17}{4},\frac{19}{4},\frac{41}{8}]$ |
$[1,\frac{5}{2},\frac{13}{4},\frac{15}{4},\frac{33}{8}]$ |
$[59, 48, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.74c1.4715 |
$x^{16} + 8 x^{12} + 16 x^{11} + 16 x^{10} + 4 x^{8} + 16 x^{6} + 32 x^{5} + 34$ |
$C_2^6:C_8$ (as 16T817) |
$512$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, 5, \frac{41}{8}, \frac{43}{8}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},4,\frac{33}{8},\frac{35}{8}]$ |
$[2,\frac{7}{2},\frac{17}{4},\frac{19}{4},\frac{41}{8}]$ |
$[1,\frac{5}{2},\frac{13}{4},\frac{15}{4},\frac{33}{8}]$ |
$[59, 48, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.74c1.4716 |
$x^{16} + 8 x^{12} + 16 x^{11} + 16 x^{10} + 4 x^{8} + 48 x^{6} + 32 x^{5} + 34$ |
$C_2^6:C_8$ (as 16T817) |
$512$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, 5, \frac{41}{8}, \frac{43}{8}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},4,\frac{33}{8},\frac{35}{8}]$ |
$[2,\frac{7}{2},\frac{17}{4},\frac{19}{4},\frac{41}{8}]$ |
$[1,\frac{5}{2},\frac{13}{4},\frac{15}{4},\frac{33}{8}]$ |
$[59, 48, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.74c1.4726 |
$x^{16} + 16 x^{15} + 16 x^{14} + 8 x^{12} + 16 x^{11} + 16 x^{10} + 4 x^{8} + 16 x^{6} + 34$ |
$C_2^6:C_8$ (as 16T817) |
$512$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, 5, \frac{41}{8}, \frac{43}{8}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},4,\frac{33}{8},\frac{35}{8}]$ |
$[2,\frac{7}{2},\frac{17}{4},\frac{19}{4},\frac{41}{8}]$ |
$[1,\frac{5}{2},\frac{13}{4},\frac{15}{4},\frac{33}{8}]$ |
$[59, 48, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |