Properties

Label 2.1.8.31a1.166-1.2.2a
Base 2.1.8.31a1.166
Degree \(2\)
e \(2\)
f \(1\)
c \(2\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{2} + a_{1} \pi x + c_{2} \pi^{2} + \pi$

Invariants

Residue field characteristic: $2$
Degree: $2$
Base field: 2.1.8.31a1.166
Ramification index $e$: $2$
Residue field degree $f$: $1$
Discriminant exponent $c$: $2$
Absolute Artin slopes: $[2,3,4,5]$
Swan slopes: $[1]$
Means: $\langle\frac{1}{2}\rangle$
Rams: $(1)$
Field count: $2$ (incomplete)
Ambiguity: $2$
Mass: $1$
Absolute Mass: $1/4$ ($3/16$ currently in the LMFDB)

Diagrams

Varying

The following invariants arise for fields within the LMFDB; since not all fields in this family are stored, it may be incomplete.

These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.

Galois group: $C_8: C_2$ (show 1), $C_2 \times (C_8:C_2)$ (show 1) (incomplete)
Hidden Artin slopes: $[\ ]$ (show 1), $[\ ]^{2}$ (show 1) (incomplete)
Indices of inseparability: $[49,34,20,8,0]$
Associated inertia: $[1,1,1,1]$
Jump Set: $[1,2,4,8,32]$ (show 1), $[1,27,43,59,75]$ (show 1)

Fields


Showing all 2

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
2.1.16.64g1.2 $x^{16} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 34$ $C_8: C_2$ (as 16T6) $16$ $16$ $[2, 3, 4, 5]$ $[1,2,3,4]$ $[\ ]$ $[\ ]$ $[49, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 27, 43, 59, 75]$
2.1.16.64g1.4792 $x^{16} + 16 x^{15} + 8 x^{14} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 16 x^{9} + 2 x^{8} + 16 x^{7} + 8 x^{6} + 4 x^{4} + 16 x^{3} + 8 x^{2} + 16 x + 30$ $C_2 \times (C_8:C_2)$ (as 16T15) $32$ $8$ $[2, 3, 4, 5]^{2}$ $[1,2,3,4]^{2}$ $[\ ]^{2}$ $[\ ]^{2}$ $[49, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
  displayed columns for results