|  $x^{2} + a_{1} \pi x + c_{2} \pi^{2} + \pi$  | 
  
  
  
The following invariants arise for fields within the LMFDB; since not all fields in this family are stored, it may be incomplete.
These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
    | Galois group: |  $C_2\wr C_2^2$ (show 1), $C_2\wr C_2^2$ (show 1) (incomplete)  | 
  | Hidden Artin slopes: |  $[\frac{7}{2}]^{2}$ (incomplete)  | 
    | Indices of inseparability: |  $[43,34,20,8,0]$  | 
  | Associated inertia: |  $[1,1,1,1]$  | 
  | Jump Set: |  $[1,2,4,8,32]$ (show 1), $[1,11,29,45,61]$ (show 1)  | 
 
  
  
          
                  | Label | 
                  Polynomial $/ \Q_p$ | 
                  Galois group $/ \Q_p$ | 
                  Galois degree $/ \Q_p$ | 
                  $\#\Aut(K/\Q_p)$ | 
                  Artin slope content $/ \Q_p$ | 
                  Swan slope content $/ \Q_p$ | 
                  Hidden Artin slopes $/ \Q_p$ | 
                  Hidden Swan slopes $/ \Q_p$ | 
                  Ind. of Insep. $/ \Q_p$ | 
                  Assoc. Inertia $/ \Q_p$ | 
                  Resid. Poly | 
                  Jump Set | 
              
      
      
              | 2.1.16.58n1.84 | 
              $x^{16} + 8 x^{14} + 8 x^{13} + 8 x^{11} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 16 x^{3} + 8 x^{2} + 2$ | 
              $C_2\wr C_2^2$ (as 16T129) | 
              $64$ | 
              $4$ | 
              $[2, 3, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ | 
              $[1,2,\frac{5}{2},3,\frac{13}{4}]^{2}$ | 
              $[\frac{7}{2}]^{2}$ | 
              $[\frac{5}{2}]^{2}$ | 
              $[43, 34, 20, 8, 0]$ | 
              $[1, 1, 1, 1]$ | 
              $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ | 
              $[1, 11, 29, 45, 61]$ | 
          
  
   
 
  
Download
displayed columns for
 results