Properties

Label 2.1.8.28b1.7-1.2.2a
Base 2.1.8.28b1.7
Degree \(2\)
e \(2\)
f \(1\)
c \(2\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{2} + a_{1} \pi x + c_{2} \pi^{2} + \pi$

Invariants

Residue field characteristic: $2$
Degree: $2$
Base field: 2.1.8.28b1.7
Ramification index $e$: $2$
Residue field degree $f$: $1$
Discriminant exponent $c$: $2$
Absolute Artin slopes: $[2,3,4,\frac{17}{4}]$
Swan slopes: $[1]$
Means: $\langle\frac{1}{2}\rangle$
Rams: $(1)$
Field count: $2$ (incomplete)
Ambiguity: $2$
Mass: $1$
Absolute Mass: $1/2$ ($3/8$ currently in the LMFDB)

Diagrams

Varying

The following invariants arise for fields within the LMFDB; since not all fields in this family are stored, it may be incomplete.

These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.

Galois group: $C_2\wr C_2^2$ (show 1), $C_2\wr C_2^2$ (show 1) (incomplete)
Hidden Artin slopes: $[\frac{7}{2}]^{2}$ (incomplete)
Indices of inseparability: $[43,34,20,8,0]$
Associated inertia: $[1,1,1,1]$
Jump Set: $[1,2,4,8,32]$ (show 1), $[1,11,29,45,61]$ (show 1)

Fields


Showing all 2

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
2.1.16.58n1.84 $x^{16} + 8 x^{14} + 8 x^{13} + 8 x^{11} + 2 x^{8} + 8 x^{6} + 4 x^{4} + 16 x^{3} + 8 x^{2} + 2$ $C_2\wr C_2^2$ (as 16T129) $64$ $4$ $[2, 3, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ $[1,2,\frac{5}{2},3,\frac{13}{4}]^{2}$ $[\frac{7}{2}]^{2}$ $[\frac{5}{2}]^{2}$ $[43, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 11, 29, 45, 61]$
2.1.16.58n1.628 $x^{16} + 8 x^{15} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 6$ $C_2\wr C_2^2$ (as 16T149) $64$ $8$ $[2, 3, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ $[1,2,\frac{5}{2},3,\frac{13}{4}]^{2}$ $[\frac{7}{2}]^{2}$ $[\frac{5}{2}]^{2}$ $[43, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
  displayed columns for results