Defining polynomial
| $x^{4} + \left(b_{15} \pi^{4} + b_{11} \pi^{3}\right) x^{3} + a_{2} \pi x^{2} + \left(b_{13} \pi^{4} + a_{9} \pi^{3}\right) x + c_{16} \pi^{5} + c_{4} \pi^{2} + \pi$ | 
Invariants
| Residue field characteristic: | $2$ | 
| Degree: | $4$ | 
| Base field: | 2.1.8.28b1.22 | 
| Ramification index $e$: | $4$ | 
| Residue field degree $f$: | $1$ | 
| Discriminant exponent $c$: | $12$ | 
| Absolute Artin slopes: | $[2,3,4,4,\frac{17}{4}]$ | 
| Swan slopes: | $[1,4]$ | 
| Means: | $\langle\frac{1}{2},\frac{9}{4}\rangle$ | 
| Rams: | $(1,7)$ | 
| Field count: | $0$ (incomplete) | 
| Ambiguity: | $4$ | 
| Mass: | $8$ | 
| Absolute Mass: | $4$ ($0$ currently in the LMFDB) | 
Diagrams
The LMFDB does not contain any fields from this family.