Defining polynomial over unramified subextension
| $x^{2} + \left(b_{25} \pi^{13} + b_{23} \pi^{12} + b_{21} \pi^{11} + b_{19} \pi^{10} + b_{17} \pi^{9} + b_{15} \pi^{8} + a_{13} \pi^{7}\right) x + c_{26} \pi^{14} + \pi$ | 
Invariants
| Residue field characteristic: | $2$ | 
| Degree: | $4$ | 
| Base field: | 2.1.8.28b1.16 | 
| Ramification index $e$: | $2$ | 
| Residue field degree $f$: | $2$ | 
| Discriminant exponent $c$: | $28$ | 
| Absolute Artin slopes: | $[3,4,\frac{17}{4},\frac{21}{4}]$ | 
| Swan slopes: | $[13]$ | 
| Means: | $\langle\frac{13}{2}\rangle$ | 
| Rams: | $(13)$ | 
| Field count: | $0$ (incomplete) | 
| Ambiguity: | $4$ | 
| Mass: | $12288$ | 
| Absolute Mass: | $3072$ ($0$ currently in the LMFDB) | 
Diagrams
The LMFDB does not contain any fields from this family.
