These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
| Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
| 2.1.16.48o1.73 |
$x^{16} + 4 x^{12} + 4 x^{10} + 2 x^{8} + 8 x + 14$ |
$C_2^4.C_2^3$ (as 16T229) |
$128$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}]^{4}$ |
$[1,1,2,2,\frac{5}{2}]^{4}$ |
$[2]^{4}$ |
$[1]^{4}$ |
$[33, 26, 24, 8, 0]$ |
$[1, 2, 1]$ |
$z^8 + 1,z^6 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.48o1.74 |
$x^{16} + 4 x^{12} + 4 x^{10} + 2 x^{8} + 8 x^{5} + 8 x + 14$ |
$C_4:D_4$ (as 16T43) |
$32$ |
$8$ |
$[2, 3, 3, \frac{7}{2}]^{2}$ |
$[1,2,2,\frac{5}{2}]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[33, 26, 24, 8, 0]$ |
$[1, 2, 1]$ |
$z^8 + 1,z^6 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.48o1.75 |
$x^{16} + 4 x^{12} + 4 x^{10} + 10 x^{8} + 8 x^{5} + 8 x + 14$ |
$C_4:D_4$ (as 16T43) |
$32$ |
$8$ |
$[2, 3, 3, \frac{7}{2}]^{2}$ |
$[1,2,2,\frac{5}{2}]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[33, 26, 24, 8, 0]$ |
$[1, 2, 1]$ |
$z^8 + 1,z^6 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.48o1.76 |
$x^{16} + 4 x^{12} + 4 x^{10} + 2 x^{8} + 8 x^{7} + 8 x^{5} + 8 x + 14$ |
$C_4^2:C_2$ (as 16T30) |
$32$ |
$4$ |
$[2, 3, 3, \frac{7}{2}]^{2}$ |
$[1,2,2,\frac{5}{2}]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[33, 26, 24, 8, 0]$ |
$[1, 2, 1]$ |
$z^8 + 1,z^6 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.48o1.77 |
$x^{16} + 4 x^{12} + 4 x^{10} + 2 x^{8} + 8 x^{3} + 8 x + 14$ |
$C_2^5.(C_2\times D_4)$ (as 16T833) |
$512$ |
$2$ |
$[2, 2, 2, 3, 3, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,2,2,\frac{5}{2}]^{4}$ |
$[2,2,3]^{4}$ |
$[1,1,2]^{4}$ |
$[33, 26, 24, 8, 0]$ |
$[1, 2, 1]$ |
$z^8 + 1,z^6 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.48o1.78 |
$x^{16} + 4 x^{12} + 4 x^{10} + 10 x^{8} + 8 x^{3} + 8 x + 14$ |
$C_2^5.(C_2\times D_4)$ (as 16T833) |
$512$ |
$2$ |
$[2, 2, 2, 3, 3, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,2,2,\frac{5}{2}]^{4}$ |
$[2,2,3]^{4}$ |
$[1,1,2]^{4}$ |
$[33, 26, 24, 8, 0]$ |
$[1, 2, 1]$ |
$z^8 + 1,z^6 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |