Properties

Label 2.1.8.16c
Base 2.1.1.0a1.1
Degree \(8\)
e \(8\)
f \(1\)
c \(16\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{8} + 2 a_{6} x^{6} + \left(2 b_{4} + 4 c_{12}\right) x^{4} + 4 b_{11} x^{3} + 4 a_{9} x + 4 c_{8} + 2$

Invariants

Residue field characteristic: $2$
Degree: $8$
Base field: $\Q_{2}$
Ramification index $e$: $8$
Residue field degree $f$: $1$
Discriminant exponent $c$: $16$
Artin slopes: $[2,2,\frac{5}{2}]$
Swan slopes: $[1,1,\frac{3}{2}]$
Means: $\langle\frac{1}{2},\frac{3}{4},\frac{9}{8}\rangle$
Rams: $(1,1,3)$
Field count: $10$ (complete)
Ambiguity: $4$
Mass: $4$
Absolute Mass: $4$

Diagrams

Varying

Indices of inseparability: $[9,6,4,0]$ (show 4), $[9,6,6,0]$ (show 6)
Associated inertia: $[2,1]$ (show 6), $[3,1]$ (show 4)
Jump Set: $[1,2,7,15]$ (show 4), $[1,3,6,16]$ (show 3), $[1,3,9,17]$ (show 3)

Galois groups and Hidden Artin slopes

Select desired size of Galois group.

Fields


Showing all 4

  displayed columns for results
Label Packet size Polynomial Galois group Galois degree $\#\Aut(K/\Q_p)$ Artin slope content Swan slope content Hidden Artin slopes Hidden Swan slopes Ind. of Insep. Assoc. Inertia Resid. Poly Jump Set
2.1.8.16c2.1 $x^{8} + 2 x^{6} + 2 x^{4} + 4 x + 2$ $C_2\wr A_4$ (as 8T38) $192$ $2$ $[2, 2, 2, 2, \frac{5}{2}]^{6}$ $[1,1,1,1,\frac{3}{2}]^{6}$ $[2,2]^{6}$ $[1,1]^{6}$ $[9, 6, 4, 0]$ $[3, 1]$ $z^6 + z^2 + 1,z + 1$ $[1, 2, 7, 15]$
2.1.8.16c2.2 $x^{8} + 2 x^{6} + 6 x^{4} + 4 x + 2$ $C_2\wr A_4$ (as 8T38) $192$ $2$ $[2, 2, 2, 2, \frac{5}{2}]^{6}$ $[1,1,1,1,\frac{3}{2}]^{6}$ $[2,2]^{6}$ $[1,1]^{6}$ $[9, 6, 4, 0]$ $[3, 1]$ $z^6 + z^2 + 1,z + 1$ $[1, 2, 7, 15]$
2.1.8.16c2.3 $x^{8} + 2 x^{6} + 2 x^{4} + 4 x^{3} + 4 x + 2$ $C_2\wr A_4$ (as 8T38) $192$ $2$ $[2, 2, 2, 2, \frac{5}{2}]^{6}$ $[1,1,1,1,\frac{3}{2}]^{6}$ $[2,2]^{6}$ $[1,1]^{6}$ $[9, 6, 4, 0]$ $[3, 1]$ $z^6 + z^2 + 1,z + 1$ $[1, 2, 7, 15]$
2.1.8.16c2.4 $x^{8} + 2 x^{6} + 6 x^{4} + 4 x^{3} + 4 x + 2$ $C_2\wr A_4$ (as 8T38) $192$ $2$ $[2, 2, 2, 2, \frac{5}{2}]^{6}$ $[1,1,1,1,\frac{3}{2}]^{6}$ $[2,2]^{6}$ $[1,1]^{6}$ $[9, 6, 4, 0]$ $[3, 1]$ $z^6 + z^2 + 1,z + 1$ $[1, 2, 7, 15]$
  displayed columns for results