These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
| Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
| 2.1.16.44m1.53 |
$x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{10} + 4 x^{6} + 6$ |
$C_2^5.(C_2\times D_4)$ (as 16T813) |
$512$ |
$2$ |
$[2, 2, 2, 3, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,2,2,2,\frac{9}{4}]^{4}$ |
$[2,3,3]^{4}$ |
$[1,2,2]^{4}$ |
$[29, 22, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.44m1.54 |
$x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{10} + 4 x^{6} + 8 x^{4} + 6$ |
$C_2^5.(C_2\times D_4)$ (as 16T813) |
$512$ |
$2$ |
$[2, 2, 2, 3, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,2,2,2,\frac{9}{4}]^{4}$ |
$[2,3,3]^{4}$ |
$[1,2,2]^{4}$ |
$[29, 22, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.44m1.57 |
$x^{16} + 4 x^{14} + 4 x^{13} + 2 x^{12} + 4 x^{10} + 4 x^{6} + 6$ |
$C_2^5.(C_2\times D_4)$ (as 16T813) |
$512$ |
$2$ |
$[2, 2, 2, 3, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,2,2,2,\frac{9}{4}]^{4}$ |
$[2,3,3]^{4}$ |
$[1,2,2]^{4}$ |
$[29, 22, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.44m1.58 |
$x^{16} + 4 x^{14} + 4 x^{13} + 2 x^{12} + 4 x^{10} + 4 x^{6} + 8 x^{4} + 6$ |
$C_2^5.(C_2\times D_4)$ (as 16T813) |
$512$ |
$2$ |
$[2, 2, 2, 3, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,2,2,2,\frac{9}{4}]^{4}$ |
$[2,3,3]^{4}$ |
$[1,2,2]^{4}$ |
$[29, 22, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |