Properties

Label 2.1.4.8b1.4-1.4.6a
Base 2.1.4.8b1.4
Degree \(4\)
e \(4\)
f \(1\)
c \(6\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{4} + a_{3} \pi x^{3} + b_{2} \pi x^{2} + c_{4} \pi^{2} + \pi$

Invariants

Residue field characteristic: $2$
Degree: $4$
Base field: 2.1.4.8b1.4
Ramification index $e$: $4$
Residue field degree $f$: $1$
Discriminant exponent $c$: $6$
Absolute Artin slopes: $[2,2,2,3]$
Swan slopes: $[1,1]$
Means: $\langle\frac{1}{2},\frac{3}{4}\rangle$
Rams: $(1,1)$
Field count: $3$ (complete)
Ambiguity: $2$
Mass: $2$
Absolute Mass: $1$

Diagrams

Varying

These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.

Galois group: $C_2^4:C_4$ (show 2), $D_4\times A_4$ (show 1)
Hidden Artin slopes: $[\ ]^{6}$ (show 1), $[\ ]^{4}$ (show 2)
Indices of inseparability: $[23,14,12,8,0]$ (show 2), $[23,14,14,14,0]$ (show 1)
Associated inertia: $[3,1]$ (show 1), $[4,1]$ (show 2)
Jump Set: $[1,2,7,14,32]$ (show 2), $[1,3,7,14,32]$ (show 1)

Fields


Showing all 3

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
2.1.16.38c1.21 $x^{16} + 2 x^{14} + 4 x^{7} + 6$ $D_4\times A_4$ (as 16T179) $96$ $2$ $[2, 2, 2, 3]^{6}$ $[1,1,1,2]^{6}$ $[\ ]^{6}$ $[\ ]^{6}$ $[23, 14, 14, 14, 0]$ $[3, 1]$ $z^{14} + 1,z + 1$ $[1, 3, 7, 14, 32]$
2.1.16.38c4.25 $x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{13} + 2 x^{12} + 2 x^{8} + 4 x^{7} + 6$ $C_2^4:C_4$ (as 16T76) $64$ $4$ $[2, 2, 2, 3]^{4}$ $[1,1,1,2]^{4}$ $[\ ]^{4}$ $[\ ]^{4}$ $[23, 14, 12, 8, 0]$ $[4, 1]$ $z^{14} + z^6 + z^2 + 1,z + 1$ $[1, 2, 7, 14, 32]$
2.1.16.38c4.26 $x^{16} + 4 x^{15} + 2 x^{14} + 4 x^{13} + 2 x^{12} + 2 x^{8} + 4 x^{7} + 14$ $C_2^4:C_4$ (as 16T76) $64$ $4$ $[2, 2, 2, 3]^{4}$ $[1,1,1,2]^{4}$ $[\ ]^{4}$ $[\ ]^{4}$ $[23, 14, 12, 8, 0]$ $[4, 1]$ $z^{14} + z^6 + z^2 + 1,z + 1$ $[1, 2, 7, 14, 32]$
  displayed columns for results