Properties

Label 2.1.4.11a1.5-3.1.0a
Base 2.1.4.11a1.5
Degree \(3\)
e \(1\)
f \(3\)
c \(0\)

Related objects

Downloads

Learn more

Invariants

Residue field characteristic: $2$
Degree: $3$
Base field: 2.1.4.11a1.5
Ramification index $e$: $1$
Residue field degree $f$: $3$
Discriminant exponent $c$: $0$
Absolute Artin slopes: $[3,4]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $1$ (complete)
Ambiguity: $3$
Mass: $1$
Absolute Mass: $1/6$

Varying

These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.

Galois group: $D_4 \times C_3$
Hidden Artin slopes: $[2]$
Indices of inseparability: $[8,4,0]$
Associated inertia: $[1,1]$
Jump Set: $[1,3,7]$

Fields


Showing all 1

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
2.3.4.33a1.25 $( x^{3} + x + 1 )^{4} + 10$ $D_4 \times C_3$ (as 12T14) $24$ $6$ $[2, 3, 4]^{3}$ $[1,2,3]^{3}$ $[2]$ $[1]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + (t + 1),(t + 1) z + (t^2 + 1)$ $[1, 3, 7]$
  displayed columns for results