These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
  
          
                  | Label | Polynomial $/ \Q_p$ | Galois group $/ \Q_p$ | Galois degree $/ \Q_p$ | $\#\Aut(K/\Q_p)$ | Artin slope content $/ \Q_p$ | Swan slope content $/ \Q_p$ | Hidden Artin slopes $/ \Q_p$ | Hidden Swan slopes $/ \Q_p$ | Ind. of Insep. $/ \Q_p$ | Assoc. Inertia $/ \Q_p$ | Resid. Poly | Jump Set | 
      
      
              | 2.1.16.60j1.65 | $x^{16} + 8 x^{13} + 4 x^{8} + 2$ | $C_2^6:(C_2\times S_4)$ (as 16T1519) | $3072$ | $1$ | $[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ | $[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ | $[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ | $[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ | $[45, 45, 32, 16, 0]$ | $[1, 1, 1]$ | $z^8 + 1,z^4 + 1,z + 1$ | $[1, 3, 7, 15, 31]$ | 
      
              | 2.1.16.60j1.67 | $x^{16} + 8 x^{14} + 8 x^{13} + 4 x^{8} + 2$ | $C_2^6:(C_2\times S_4)$ (as 16T1519) | $3072$ | $1$ | $[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ | $[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ | $[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ | $[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ | $[45, 45, 32, 16, 0]$ | $[1, 1, 1]$ | $z^8 + 1,z^4 + 1,z + 1$ | $[1, 3, 7, 15, 31]$ | 
      
              | 2.1.16.60j1.69 | $x^{16} + 8 x^{13} + 8 x^{12} + 4 x^{8} + 2$ | $C_2^6:(C_2\times S_4)$ (as 16T1519) | $3072$ | $1$ | $[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ | $[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ | $[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ | $[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ | $[45, 45, 32, 16, 0]$ | $[1, 1, 1]$ | $z^8 + 1,z^4 + 1,z + 1$ | $[1, 3, 7, 15, 31]$ | 
      
              | 2.1.16.60j1.71 | $x^{16} + 8 x^{14} + 8 x^{13} + 8 x^{12} + 4 x^{8} + 2$ | $C_2^6:(C_2\times S_4)$ (as 16T1519) | $3072$ | $1$ | $[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ | $[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ | $[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ | $[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ | $[45, 45, 32, 16, 0]$ | $[1, 1, 1]$ | $z^8 + 1,z^4 + 1,z + 1$ | $[1, 3, 7, 15, 31]$ | 
      
              | 2.1.16.60j1.90 | $x^{16} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 8 x^{4} + 18$ | $C_2^6:(C_2\times S_4)$ (as 16T1519) | $3072$ | $1$ | $[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ | $[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ | $[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ | $[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ | $[45, 42, 32, 16, 0]$ | $[1, 1, 1]$ | $z^8 + 1,z^4 + 1,z + 1$ | $[1, 3, 7, 15, 31]$ | 
      
              | 2.1.16.60j1.92 | $x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 8 x^{4} + 18$ | $C_2^6:(C_2\times S_4)$ (as 16T1519) | $3072$ | $1$ | $[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ | $[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ | $[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ | $[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ | $[45, 42, 32, 16, 0]$ | $[1, 1, 1]$ | $z^8 + 1,z^4 + 1,z + 1$ | $[1, 3, 7, 15, 31]$ | 
      
              | 2.1.16.60j1.94 | $x^{16} + 8 x^{14} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 8 x^{4} + 18$ | $C_2^6:(C_2\times S_4)$ (as 16T1519) | $3072$ | $1$ | $[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ | $[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ | $[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ | $[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ | $[45, 42, 32, 16, 0]$ | $[1, 1, 1]$ | $z^8 + 1,z^4 + 1,z + 1$ | $[1, 3, 7, 15, 31]$ | 
      
              | 2.1.16.60j1.96 | $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 8 x^{4} + 18$ | $C_2^6:(C_2\times S_4)$ (as 16T1519) | $3072$ | $1$ | $[\frac{4}{3}, \frac{4}{3}, 2, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ | $[\frac{1}{3},\frac{1}{3},1,2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ | $[\frac{4}{3},\frac{4}{3},2,\frac{19}{6},\frac{19}{6}]^{2}_{3}$ | $[\frac{1}{3},\frac{1}{3},1,\frac{13}{6},\frac{13}{6}]^{2}_{3}$ | $[45, 42, 32, 16, 0]$ | $[1, 1, 1]$ | $z^8 + 1,z^4 + 1,z + 1$ | $[1, 3, 7, 15, 31]$ |