Properties

Label 2.1.4.11a1.12-1.4.4a
Base 2.1.4.11a1.12
Degree \(4\)
e \(4\)
f \(1\)
c \(4\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{4} + a_{1} \pi x + \pi$

Invariants

Residue field characteristic: $2$
Degree: $4$
Base field: 2.1.4.11a1.12
Ramification index $e$: $4$
Residue field degree $f$: $1$
Discriminant exponent $c$: $4$
Absolute Artin slopes: $[\frac{4}{3},\frac{4}{3},3,4]$
Swan slopes: $[\frac{1}{3},\frac{1}{3}]$
Means: $\langle\frac{1}{6},\frac{1}{4}\rangle$
Rams: $(\frac{1}{3},\frac{1}{3})$
Field count: $1$ (complete)
Ambiguity: $1$
Mass: $1$
Absolute Mass: $1/4$

Diagrams

Varying

These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.

Galois group: $C_4\times S_4$
Hidden Artin slopes: $[\ ]^{2}_{3}$
Indices of inseparability: $[33,18,4,4,0]$
Associated inertia: $[1,1,1]$
Jump Set: $[1,2,5,13,29]$

Fields


Showing all 1

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
2.1.16.48h1.972 $x^{16} + 8 x^{15} + 4 x^{14} + 8 x^{11} + 4 x^{10} + 8 x^{9} + 8 x^{7} + 2 x^{4} + 8 x^{3} + 4 x^{2} + 8 x + 18$ $C_4\times S_4$ (as 16T181) $96$ $4$ $[\frac{4}{3}, \frac{4}{3}, 3, 4]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,3]_{3}^{2}$ $[\ ]^{2}_{3}$ $[\ ]^{2}_{3}$ $[33, 18, 4, 4, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 5, 13, 29]$
  displayed columns for results