These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
| Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
| 2.1.16.70f1.1681 |
$x^{16} + 8 x^{14} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 18$ |
$C_2\wr (C_2\times C_4)$ (as 16T1385) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}, \frac{19}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4},\frac{15}{4},4]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4},\frac{17}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4},\frac{13}{4}]^{2}$ |
$[55, 46, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70f1.1682 |
$x^{16} + 16 x^{15} + 8 x^{14} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 18$ |
$C_2\wr (C_2\times C_4)$ (as 16T1385) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}, \frac{19}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4},\frac{15}{4},4]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4},\frac{17}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4},\frac{13}{4}]^{2}$ |
$[55, 46, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70f1.1683 |
$x^{16} + 8 x^{14} + 16 x^{13} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 18$ |
$C_2\wr (C_2\times C_4)$ (as 16T1385) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}, \frac{19}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4},\frac{15}{4},4]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4},\frac{17}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4},\frac{13}{4}]^{2}$ |
$[55, 46, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70f1.1684 |
$x^{16} + 16 x^{15} + 8 x^{14} + 16 x^{13} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 18$ |
$C_2\wr (C_2\times C_4)$ (as 16T1385) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}, \frac{19}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4},\frac{15}{4},4]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4},\frac{17}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4},\frac{13}{4}]^{2}$ |
$[55, 46, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70f1.1685 |
$x^{16} + 8 x^{14} + 16 x^{12} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 18$ |
$C_2\wr (C_2\times C_4)$ (as 16T1385) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}, \frac{19}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4},\frac{15}{4},4]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4},\frac{17}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4},\frac{13}{4}]^{2}$ |
$[55, 46, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70f1.1686 |
$x^{16} + 16 x^{15} + 8 x^{14} + 16 x^{12} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 18$ |
$C_2\wr (C_2\times C_4)$ (as 16T1385) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}, \frac{19}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4},\frac{15}{4},4]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4},\frac{17}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4},\frac{13}{4}]^{2}$ |
$[55, 46, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70f1.1687 |
$x^{16} + 8 x^{14} + 16 x^{13} + 16 x^{12} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 18$ |
$C_2\wr (C_2\times C_4)$ (as 16T1385) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}, \frac{19}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4},\frac{15}{4},4]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4},\frac{17}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4},\frac{13}{4}]^{2}$ |
$[55, 46, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70f1.1688 |
$x^{16} + 16 x^{15} + 8 x^{14} + 16 x^{13} + 16 x^{12} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 18$ |
$C_2\wr (C_2\times C_4)$ (as 16T1385) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}, \frac{19}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4},\frac{15}{4},4]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4},\frac{17}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4},\frac{13}{4}]^{2}$ |
$[55, 46, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70f1.1689 |
$x^{16} + 8 x^{14} + 16 x^{11} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 18$ |
$C_2\wr (C_2\times C_4)$ (as 16T1385) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}, \frac{19}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4},\frac{15}{4},4]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4},\frac{17}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4},\frac{13}{4}]^{2}$ |
$[55, 46, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70f1.1690 |
$x^{16} + 16 x^{15} + 8 x^{14} + 16 x^{11} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 18$ |
$C_2\wr (C_2\times C_4)$ (as 16T1385) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}, \frac{19}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4},\frac{15}{4},4]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4},\frac{17}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4},\frac{13}{4}]^{2}$ |
$[55, 46, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70f1.1691 |
$x^{16} + 8 x^{14} + 16 x^{13} + 16 x^{11} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 18$ |
$C_2\wr (C_2\times C_4)$ (as 16T1385) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}, \frac{19}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4},\frac{15}{4},4]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4},\frac{17}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4},\frac{13}{4}]^{2}$ |
$[55, 46, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70f1.1692 |
$x^{16} + 16 x^{15} + 8 x^{14} + 16 x^{13} + 16 x^{11} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 18$ |
$C_2\wr (C_2\times C_4)$ (as 16T1385) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}, \frac{19}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4},\frac{15}{4},4]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4},\frac{17}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4},\frac{13}{4}]^{2}$ |
$[55, 46, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70f1.1693 |
$x^{16} + 8 x^{14} + 16 x^{12} + 16 x^{11} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 18$ |
$C_2\wr (C_2\times C_4)$ (as 16T1385) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}, \frac{19}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4},\frac{15}{4},4]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4},\frac{17}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4},\frac{13}{4}]^{2}$ |
$[55, 46, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70f1.1694 |
$x^{16} + 16 x^{15} + 8 x^{14} + 16 x^{12} + 16 x^{11} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 18$ |
$C_2\wr (C_2\times C_4)$ (as 16T1385) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}, \frac{19}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4},\frac{15}{4},4]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4},\frac{17}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4},\frac{13}{4}]^{2}$ |
$[55, 46, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70f1.1695 |
$x^{16} + 8 x^{14} + 16 x^{13} + 16 x^{12} + 16 x^{11} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 18$ |
$C_2\wr (C_2\times C_4)$ (as 16T1385) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}, \frac{19}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4},\frac{15}{4},4]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4},\frac{17}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4},\frac{13}{4}]^{2}$ |
$[55, 46, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70f1.1696 |
$x^{16} + 16 x^{15} + 8 x^{14} + 16 x^{13} + 16 x^{12} + 16 x^{11} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 18$ |
$C_2\wr (C_2\times C_4)$ (as 16T1385) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}, \frac{19}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4},\frac{15}{4},4]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4},\frac{17}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4},\frac{13}{4}]^{2}$ |
$[55, 46, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70f1.1697 |
$x^{16} + 8 x^{14} + 16 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 18$ |
$C_2\wr (C_2\times C_4)$ (as 16T1385) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}, \frac{19}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4},\frac{15}{4},4]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4},\frac{17}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4},\frac{13}{4}]^{2}$ |
$[55, 46, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70f1.1698 |
$x^{16} + 16 x^{15} + 8 x^{14} + 16 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 18$ |
$C_2\wr (C_2\times C_4)$ (as 16T1385) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}, \frac{19}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4},\frac{15}{4},4]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4},\frac{17}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4},\frac{13}{4}]^{2}$ |
$[55, 46, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70f1.1699 |
$x^{16} + 8 x^{14} + 16 x^{13} + 16 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 18$ |
$C_2\wr (C_2\times C_4)$ (as 16T1385) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}, \frac{19}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4},\frac{15}{4},4]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4},\frac{17}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4},\frac{13}{4}]^{2}$ |
$[55, 46, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70f1.1700 |
$x^{16} + 16 x^{15} + 8 x^{14} + 16 x^{13} + 16 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 18$ |
$C_2\wr (C_2\times C_4)$ (as 16T1385) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}, \frac{19}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4},\frac{15}{4},4]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4},\frac{17}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4},\frac{13}{4}]^{2}$ |
$[55, 46, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70f1.1701 |
$x^{16} + 8 x^{14} + 16 x^{12} + 16 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 18$ |
$C_2\wr (C_2\times C_4)$ (as 16T1385) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}, \frac{19}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4},\frac{15}{4},4]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4},\frac{17}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4},\frac{13}{4}]^{2}$ |
$[55, 46, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70f1.1702 |
$x^{16} + 16 x^{15} + 8 x^{14} + 16 x^{12} + 16 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 18$ |
$C_2\wr (C_2\times C_4)$ (as 16T1385) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}, \frac{19}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4},\frac{15}{4},4]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4},\frac{17}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4},\frac{13}{4}]^{2}$ |
$[55, 46, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70f1.1703 |
$x^{16} + 8 x^{14} + 16 x^{13} + 16 x^{12} + 16 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 18$ |
$C_2\wr (C_2\times C_4)$ (as 16T1385) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}, \frac{19}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4},\frac{15}{4},4]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4},\frac{17}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4},\frac{13}{4}]^{2}$ |
$[55, 46, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70f1.1704 |
$x^{16} + 16 x^{15} + 8 x^{14} + 16 x^{13} + 16 x^{12} + 16 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 18$ |
$C_2\wr (C_2\times C_4)$ (as 16T1385) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}, \frac{19}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4},\frac{15}{4},4]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4},\frac{17}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4},\frac{13}{4}]^{2}$ |
$[55, 46, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70f1.1705 |
$x^{16} + 8 x^{14} + 16 x^{11} + 16 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 18$ |
$C_2\wr (C_2\times C_4)$ (as 16T1385) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}, \frac{19}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4},\frac{15}{4},4]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4},\frac{17}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4},\frac{13}{4}]^{2}$ |
$[55, 46, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70f1.1706 |
$x^{16} + 16 x^{15} + 8 x^{14} + 16 x^{11} + 16 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 18$ |
$C_2\wr (C_2\times C_4)$ (as 16T1385) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}, \frac{19}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4},\frac{15}{4},4]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4},\frac{17}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4},\frac{13}{4}]^{2}$ |
$[55, 46, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70f1.1707 |
$x^{16} + 8 x^{14} + 16 x^{13} + 16 x^{11} + 16 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 18$ |
$C_2\wr (C_2\times C_4)$ (as 16T1385) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}, \frac{19}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4},\frac{15}{4},4]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4},\frac{17}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4},\frac{13}{4}]^{2}$ |
$[55, 46, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70f1.1708 |
$x^{16} + 16 x^{15} + 8 x^{14} + 16 x^{13} + 16 x^{11} + 16 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 18$ |
$C_2\wr (C_2\times C_4)$ (as 16T1385) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}, \frac{19}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4},\frac{15}{4},4]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4},\frac{17}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4},\frac{13}{4}]^{2}$ |
$[55, 46, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70f1.1709 |
$x^{16} + 8 x^{14} + 16 x^{12} + 16 x^{11} + 16 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 18$ |
$C_2\wr (C_2\times C_4)$ (as 16T1385) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}, \frac{19}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4},\frac{15}{4},4]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4},\frac{17}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4},\frac{13}{4}]^{2}$ |
$[55, 46, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70f1.1710 |
$x^{16} + 16 x^{15} + 8 x^{14} + 16 x^{12} + 16 x^{11} + 16 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 18$ |
$C_2\wr (C_2\times C_4)$ (as 16T1385) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}, \frac{19}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4},\frac{15}{4},4]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4},\frac{17}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4},\frac{13}{4}]^{2}$ |
$[55, 46, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70f1.1711 |
$x^{16} + 8 x^{14} + 16 x^{13} + 16 x^{12} + 16 x^{11} + 16 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 18$ |
$C_2\wr (C_2\times C_4)$ (as 16T1385) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}, \frac{19}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4},\frac{15}{4},4]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4},\frac{17}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4},\frac{13}{4}]^{2}$ |
$[55, 46, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70f1.1712 |
$x^{16} + 16 x^{15} + 8 x^{14} + 16 x^{13} + 16 x^{12} + 16 x^{11} + 16 x^{10} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 18$ |
$C_2\wr (C_2\times C_4)$ (as 16T1385) |
$2048$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}, \frac{19}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4},\frac{15}{4},4]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2},\frac{17}{4},\frac{17}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2},\frac{13}{4},\frac{13}{4}]^{2}$ |
$[55, 46, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |