These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
| Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
| 2.1.16.70f1.1645 |
$x^{16} + 8 x^{14} + 16 x^{13} + 16 x^{11} + 4 x^{8} + 16 x^{7} + 18$ |
$C_2^4:C_8$ (as 16T258) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, 5]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},4]$ |
$[2,\frac{7}{2},\frac{17}{4}]$ |
$[1,\frac{5}{2},\frac{13}{4}]$ |
$[55, 46, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70f1.1646 |
$x^{16} + 8 x^{14} + 16 x^{13} + 16 x^{11} + 4 x^{8} + 16 x^{7} + 50$ |
$C_2^4:C_8$ (as 16T258) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, 5]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},4]$ |
$[2,\frac{7}{2},\frac{17}{4}]$ |
$[1,\frac{5}{2},\frac{13}{4}]$ |
$[55, 46, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70f1.1647 |
$x^{16} + 16 x^{15} + 8 x^{14} + 16 x^{13} + 16 x^{11} + 4 x^{8} + 16 x^{7} + 18$ |
$C_2^4:C_8$ (as 16T258) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, 5]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},4]$ |
$[2,\frac{7}{2},\frac{17}{4}]$ |
$[1,\frac{5}{2},\frac{13}{4}]$ |
$[55, 46, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70f1.1648 |
$x^{16} + 16 x^{15} + 8 x^{14} + 16 x^{13} + 16 x^{11} + 4 x^{8} + 16 x^{7} + 50$ |
$C_2^4:C_8$ (as 16T258) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, 5]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},4]$ |
$[2,\frac{7}{2},\frac{17}{4}]$ |
$[1,\frac{5}{2},\frac{13}{4}]$ |
$[55, 46, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70f1.1653 |
$x^{16} + 8 x^{14} + 16 x^{13} + 16 x^{12} + 16 x^{11} + 4 x^{8} + 16 x^{7} + 18$ |
$C_2^4:C_8$ (as 16T258) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, 5]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},4]$ |
$[2,\frac{7}{2},\frac{17}{4}]$ |
$[1,\frac{5}{2},\frac{13}{4}]$ |
$[55, 46, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70f1.1654 |
$x^{16} + 8 x^{14} + 16 x^{13} + 16 x^{12} + 16 x^{11} + 4 x^{8} + 16 x^{7} + 50$ |
$C_2^4:C_8$ (as 16T258) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, 5]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},4]$ |
$[2,\frac{7}{2},\frac{17}{4}]$ |
$[1,\frac{5}{2},\frac{13}{4}]$ |
$[55, 46, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70f1.1655 |
$x^{16} + 16 x^{15} + 8 x^{14} + 16 x^{13} + 16 x^{12} + 16 x^{11} + 4 x^{8} + 16 x^{7} + 18$ |
$C_2^4:C_8$ (as 16T258) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, 5]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},4]$ |
$[2,\frac{7}{2},\frac{17}{4}]$ |
$[1,\frac{5}{2},\frac{13}{4}]$ |
$[55, 46, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70f1.1656 |
$x^{16} + 16 x^{15} + 8 x^{14} + 16 x^{13} + 16 x^{12} + 16 x^{11} + 4 x^{8} + 16 x^{7} + 50$ |
$C_2^4:C_8$ (as 16T258) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, 5]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},4]$ |
$[2,\frac{7}{2},\frac{17}{4}]$ |
$[1,\frac{5}{2},\frac{13}{4}]$ |
$[55, 46, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70f1.1665 |
$x^{16} + 8 x^{14} + 16 x^{11} + 16 x^{10} + 4 x^{8} + 16 x^{7} + 18$ |
$C_2^4:C_8$ (as 16T258) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, 5]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},4]$ |
$[2,\frac{7}{2},\frac{17}{4}]$ |
$[1,\frac{5}{2},\frac{13}{4}]$ |
$[55, 46, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70f1.1666 |
$x^{16} + 8 x^{14} + 16 x^{11} + 16 x^{10} + 4 x^{8} + 16 x^{7} + 50$ |
$C_2^4:C_8$ (as 16T258) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, 5]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},4]$ |
$[2,\frac{7}{2},\frac{17}{4}]$ |
$[1,\frac{5}{2},\frac{13}{4}]$ |
$[55, 46, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70f1.1667 |
$x^{16} + 16 x^{15} + 8 x^{14} + 16 x^{11} + 16 x^{10} + 4 x^{8} + 16 x^{7} + 18$ |
$C_2^4:C_8$ (as 16T258) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, 5]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},4]$ |
$[2,\frac{7}{2},\frac{17}{4}]$ |
$[1,\frac{5}{2},\frac{13}{4}]$ |
$[55, 46, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70f1.1668 |
$x^{16} + 16 x^{15} + 8 x^{14} + 16 x^{11} + 16 x^{10} + 4 x^{8} + 16 x^{7} + 50$ |
$C_2^4:C_8$ (as 16T258) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, 5]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},4]$ |
$[2,\frac{7}{2},\frac{17}{4}]$ |
$[1,\frac{5}{2},\frac{13}{4}]$ |
$[55, 46, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70f1.1673 |
$x^{16} + 8 x^{14} + 16 x^{12} + 16 x^{11} + 16 x^{10} + 4 x^{8} + 16 x^{7} + 18$ |
$C_2^4:C_8$ (as 16T258) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, 5]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},4]$ |
$[2,\frac{7}{2},\frac{17}{4}]$ |
$[1,\frac{5}{2},\frac{13}{4}]$ |
$[55, 46, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70f1.1674 |
$x^{16} + 8 x^{14} + 16 x^{12} + 16 x^{11} + 16 x^{10} + 4 x^{8} + 16 x^{7} + 50$ |
$C_2^4:C_8$ (as 16T258) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, 5]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},4]$ |
$[2,\frac{7}{2},\frac{17}{4}]$ |
$[1,\frac{5}{2},\frac{13}{4}]$ |
$[55, 46, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70f1.1675 |
$x^{16} + 16 x^{15} + 8 x^{14} + 16 x^{12} + 16 x^{11} + 16 x^{10} + 4 x^{8} + 16 x^{7} + 18$ |
$C_2^4:C_8$ (as 16T258) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, 5]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},4]$ |
$[2,\frac{7}{2},\frac{17}{4}]$ |
$[1,\frac{5}{2},\frac{13}{4}]$ |
$[55, 46, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70f1.1676 |
$x^{16} + 16 x^{15} + 8 x^{14} + 16 x^{12} + 16 x^{11} + 16 x^{10} + 4 x^{8} + 16 x^{7} + 50$ |
$C_2^4:C_8$ (as 16T258) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, 5]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},4]$ |
$[2,\frac{7}{2},\frac{17}{4}]$ |
$[1,\frac{5}{2},\frac{13}{4}]$ |
$[55, 46, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |