These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
| Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
| 2.1.16.64m1.345 |
$x^{16} + 8 x^{14} + 8 x^{10} + 4 x^{8} + 8 x^{4} + 16 x + 18$ |
$C_2^6.(C_2\times C_4)$ (as 16T910) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{9}{2}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{7}{2}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[49, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.64m1.346 |
$x^{16} + 8 x^{14} + 8 x^{10} + 20 x^{8} + 8 x^{4} + 16 x + 18$ |
$C_2^6.(C_2\times C_4)$ (as 16T910) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{9}{2}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{7}{2}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[49, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.64m1.347 |
$x^{16} + 8 x^{14} + 8 x^{10} + 4 x^{8} + 16 x^{5} + 8 x^{4} + 16 x + 18$ |
$C_2^6.(C_2\times C_4)$ (as 16T910) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{9}{2}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{7}{2}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[49, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.64m1.348 |
$x^{16} + 8 x^{14} + 8 x^{10} + 20 x^{8} + 16 x^{5} + 8 x^{4} + 16 x + 18$ |
$C_2^6.(C_2\times C_4)$ (as 16T910) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{9}{2}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{7}{2}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[49, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.64m1.349 |
$x^{16} + 8 x^{14} + 8 x^{10} + 4 x^{8} + 24 x^{4} + 16 x + 18$ |
$C_2^6.(C_2\times C_4)$ (as 16T910) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{9}{2}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{7}{2}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[49, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.64m1.350 |
$x^{16} + 8 x^{14} + 8 x^{10} + 20 x^{8} + 24 x^{4} + 16 x + 18$ |
$C_2^6.(C_2\times C_4)$ (as 16T910) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{9}{2}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{7}{2}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[49, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.64m1.351 |
$x^{16} + 8 x^{14} + 8 x^{10} + 4 x^{8} + 16 x^{5} + 24 x^{4} + 16 x + 18$ |
$C_2^6.(C_2\times C_4)$ (as 16T910) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{9}{2}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{7}{2}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[49, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.64m1.352 |
$x^{16} + 8 x^{14} + 8 x^{10} + 20 x^{8} + 16 x^{5} + 24 x^{4} + 16 x + 18$ |
$C_2^6.(C_2\times C_4)$ (as 16T910) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{9}{2}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{7}{2}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[49, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.64m1.361 |
$x^{16} + 8 x^{12} + 8 x^{10} + 4 x^{8} + 8 x^{4} + 16 x + 18$ |
$C_2^3\wr C_2:C_4$ (as 16T939) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{9}{2}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{7}{2}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[49, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.64m1.362 |
$x^{16} + 8 x^{12} + 8 x^{10} + 20 x^{8} + 8 x^{4} + 16 x + 18$ |
$C_2^3\wr C_2:C_4$ (as 16T939) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{9}{2}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{7}{2}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[49, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.64m1.363 |
$x^{16} + 8 x^{12} + 8 x^{10} + 4 x^{8} + 16 x^{5} + 8 x^{4} + 16 x + 18$ |
$C_2^3\wr C_2:C_4$ (as 16T939) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{9}{2}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{7}{2}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[49, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.64m1.364 |
$x^{16} + 8 x^{12} + 8 x^{10} + 20 x^{8} + 16 x^{5} + 8 x^{4} + 16 x + 18$ |
$C_2^3\wr C_2:C_4$ (as 16T939) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{9}{2}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{7}{2}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[49, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.64m1.365 |
$x^{16} + 8 x^{12} + 8 x^{10} + 4 x^{8} + 24 x^{4} + 16 x + 18$ |
$C_2^3\wr C_2:C_4$ (as 16T939) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{9}{2}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{7}{2}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[49, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.64m1.366 |
$x^{16} + 8 x^{12} + 8 x^{10} + 20 x^{8} + 24 x^{4} + 16 x + 18$ |
$C_2^3\wr C_2:C_4$ (as 16T939) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{9}{2}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{7}{2}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[49, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.64m1.367 |
$x^{16} + 8 x^{12} + 8 x^{10} + 4 x^{8} + 16 x^{5} + 24 x^{4} + 16 x + 18$ |
$C_2^3\wr C_2:C_4$ (as 16T939) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{9}{2}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{7}{2}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[49, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.64m1.368 |
$x^{16} + 8 x^{12} + 8 x^{10} + 20 x^{8} + 16 x^{5} + 24 x^{4} + 16 x + 18$ |
$C_2^3\wr C_2:C_4$ (as 16T939) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{9}{2}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{7}{2}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[49, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |