| $x^{2} + \left(b_{5} \pi^{3} + a_{3} \pi^{2}\right) x + c_{6} \pi^{4} + \pi$ |
These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
| Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
| 2.1.8.26c1.6 |
$x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 8 x^{3} + 18$ |
$C_2^2:C_4$ (as 8T10) |
$16$ |
$4$ |
$[2, 3, \frac{7}{2}, 4]$ |
$[1,2,\frac{5}{2},3]$ |
$[2]$ |
$[1]$ |
$[19, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.1.8.26c1.10 |
$x^{8} + 4 x^{6} + 8 x^{5} + 8 x^{4} + 8 x^{3} + 18$ |
$C_2^2:C_4$ (as 8T10) |
$16$ |
$4$ |
$[2, 3, \frac{7}{2}, 4]$ |
$[1,2,\frac{5}{2},3]$ |
$[2]$ |
$[1]$ |
$[19, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
Download
displayed columns for
results