Properties

Label 2.1.4.11a1.12-1.2.4a
Base 2.1.4.11a1.12
Degree \(2\)
e \(2\)
f \(1\)
c \(4\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{2} + \left(b_{5} \pi^{3} + a_{3} \pi^{2}\right) x + c_{6} \pi^{4} + \pi$

Invariants

Residue field characteristic: $2$
Degree: $2$
Base field: 2.1.4.11a1.12
Ramification index $e$: $2$
Residue field degree $f$: $1$
Discriminant exponent $c$: $4$
Absolute Artin slopes: $[3,\frac{7}{2},4]$
Swan slopes: $[3]$
Means: $\langle\frac{3}{2}\rangle$
Rams: $(3)$
Field count: $2$ (complete)
Ambiguity: $2$
Mass: $2$
Absolute Mass: $1/2$

Diagrams

Varying

These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.

Galois group: $C_2^2:C_4$
Hidden Artin slopes: $[2]$
Indices of inseparability: $[19,14,8,0]$
Associated inertia: $[1,1,1]$
Jump Set: $[1,3,7,15]$

Fields


Showing all 2

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
2.1.8.26c1.6 $x^{8} + 8 x^{7} + 4 x^{6} + 8 x^{5} + 8 x^{3} + 18$ $C_2^2:C_4$ (as 8T10) $16$ $4$ $[2, 3, \frac{7}{2}, 4]$ $[1,2,\frac{5}{2},3]$ $[2]$ $[1]$ $[19, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
2.1.8.26c1.10 $x^{8} + 4 x^{6} + 8 x^{5} + 8 x^{4} + 8 x^{3} + 18$ $C_2^2:C_4$ (as 8T10) $16$ $4$ $[2, 3, \frac{7}{2}, 4]$ $[1,2,\frac{5}{2},3]$ $[2]$ $[1]$ $[19, 14, 8, 0]$ $[1, 1, 1]$ $z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15]$
  displayed columns for results