These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
2.3.4.33a1.185 |
$( x^{3} + x + 1 )^{4} + 4 ( x^{3} + x + 1 )^{2} + 8 x^{2} ( x^{3} + x + 1 ) + 2$ |
$C_2^4:C_{12}$ (as 12T105) |
$192$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{3}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{3}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]$ |
$[1,1,\frac{5}{2},\frac{5}{2}]$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + (t^2 + 1)$ |
$[1, 3, 7]$ |
2.3.4.33a1.186 |
$( x^{3} + x + 1 )^{4} + 8 x ( x^{3} + x + 1 )^{3} + 4 ( x^{3} + x + 1 )^{2} + 8 x^{2} ( x^{3} + x + 1 ) + 2$ |
$C_2^4:C_{12}$ (as 12T105) |
$192$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{3}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{3}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]$ |
$[1,1,\frac{5}{2},\frac{5}{2}]$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + (t^2 + 1)$ |
$[1, 3, 7]$ |
2.3.4.33a1.187 |
$( x^{3} + x + 1 )^{4} + 8 ( x^{3} + x + 1 )^{3} + 4 ( x^{3} + x + 1 )^{2} + 8 x^{2} ( x^{3} + x + 1 ) + 2$ |
$C_2^4:C_{12}$ (as 12T105) |
$192$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{3}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{3}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]$ |
$[1,1,\frac{5}{2},\frac{5}{2}]$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + (t^2 + 1)$ |
$[1, 3, 7]$ |
2.3.4.33a1.188 |
$( x^{3} + x + 1 )^{4} + \left(8 x + 8\right) ( x^{3} + x + 1 )^{3} + 4 ( x^{3} + x + 1 )^{2} + 8 x^{2} ( x^{3} + x + 1 ) + 2$ |
$C_2^4:C_{12}$ (as 12T105) |
$192$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{3}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{3}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]$ |
$[1,1,\frac{5}{2},\frac{5}{2}]$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + (t^2 + 1)$ |
$[1, 3, 7]$ |
2.3.4.33a1.189 |
$( x^{3} + x + 1 )^{4} + 4 ( x^{3} + x + 1 )^{2} + 8 x ( x^{3} + x + 1 ) + 2$ |
$C_2^4:C_{12}$ (as 12T105) |
$192$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{3}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{3}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]$ |
$[1,1,\frac{5}{2},\frac{5}{2}]$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + (t^2 + 1)$ |
$[1, 3, 7]$ |
2.3.4.33a1.190 |
$( x^{3} + x + 1 )^{4} + 8 x^{2} ( x^{3} + x + 1 )^{3} + 4 ( x^{3} + x + 1 )^{2} + 8 x ( x^{3} + x + 1 ) + 2$ |
$C_2^4:C_{12}$ (as 12T105) |
$192$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{3}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{3}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]$ |
$[1,1,\frac{5}{2},\frac{5}{2}]$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + (t^2 + 1)$ |
$[1, 3, 7]$ |
2.3.4.33a1.191 |
$( x^{3} + x + 1 )^{4} + 8 ( x^{3} + x + 1 )^{3} + 4 ( x^{3} + x + 1 )^{2} + 8 x ( x^{3} + x + 1 ) + 2$ |
$C_2^4:C_{12}$ (as 12T105) |
$192$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{3}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{3}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]$ |
$[1,1,\frac{5}{2},\frac{5}{2}]$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + (t^2 + 1)$ |
$[1, 3, 7]$ |
2.3.4.33a1.192 |
$( x^{3} + x + 1 )^{4} + \left(8 x^{2} + 8\right) ( x^{3} + x + 1 )^{3} + 4 ( x^{3} + x + 1 )^{2} + 8 x ( x^{3} + x + 1 ) + 2$ |
$C_2^4:C_{12}$ (as 12T105) |
$192$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{3}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{3}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]$ |
$[1,1,\frac{5}{2},\frac{5}{2}]$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + (t + 1),(t + 1) z + (t^2 + 1)$ |
$[1, 3, 7]$ |