These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
2.1.8.28b1.41 |
$x^{8} + 8 x^{5} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^3: C_4$ (as 8T20) |
$32$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4}]$ |
$[2,\frac{7}{2}]$ |
$[1,\frac{5}{2}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
2.1.8.28b1.42 |
$x^{8} + 8 x^{5} + 4 x^{4} + 8 x^{2} + 18$ |
$C_2^3: C_4$ (as 8T20) |
$32$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4}]$ |
$[2,\frac{7}{2}]$ |
$[1,\frac{5}{2}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
2.1.8.28b1.43 |
$x^{8} + 8 x^{7} + 8 x^{5} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^3: C_4$ (as 8T20) |
$32$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4}]$ |
$[2,\frac{7}{2}]$ |
$[1,\frac{5}{2}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
2.1.8.28b1.44 |
$x^{8} + 8 x^{7} + 8 x^{5} + 4 x^{4} + 24 x^{2} + 2$ |
$C_2^3: C_4$ (as 8T20) |
$32$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4}]$ |
$[2,\frac{7}{2}]$ |
$[1,\frac{5}{2}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
2.1.8.28b1.45 |
$x^{8} + 8 x^{7} + 8 x^{5} + 4 x^{4} + 8 x^{2} + 18$ |
$C_2^3: C_4$ (as 8T20) |
$32$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4}]$ |
$[2,\frac{7}{2}]$ |
$[1,\frac{5}{2}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
2.1.8.28b1.46 |
$x^{8} + 8 x^{7} + 8 x^{5} + 4 x^{4} + 24 x^{2} + 18$ |
$C_2^3: C_4$ (as 8T20) |
$32$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4}]$ |
$[2,\frac{7}{2}]$ |
$[1,\frac{5}{2}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
2.1.8.28b1.47 |
$x^{8} + 8 x^{7} + 8 x^{6} + 8 x^{5} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^3: C_4$ (as 8T20) |
$32$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4}]$ |
$[2,\frac{7}{2}]$ |
$[1,\frac{5}{2}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
2.1.8.28b1.48 |
$x^{8} + 8 x^{7} + 8 x^{6} + 8 x^{5} + 4 x^{4} + 8 x^{2} + 18$ |
$C_2^3: C_4$ (as 8T20) |
$32$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4}]$ |
$[2,\frac{7}{2}]$ |
$[1,\frac{5}{2}]$ |
$[21, 16, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |