Properties

Label 2.1.2.2a1.1-3.2.6a
Base 2.1.2.2a1.1
Degree \(6\)
e \(2\)
f \(3\)
c \(6\)

Related objects

Downloads

Learn more

Defining polynomial over unramified subextension

$x^{2} + a_{1} \pi x + c_{2} \pi^{2} + \pi$

Invariants

Residue field characteristic: $2$
Degree: $6$
Base field: $\Q_{2}(\sqrt{-1})$
Ramification index $e$: $2$
Residue field degree $f$: $3$
Discriminant exponent $c$: $6$
Absolute Artin slopes: $[2,2]$
Swan slopes: $[1]$
Means: $\langle\frac{1}{2}\rangle$
Rams: $(1)$
Field count: $4$ (complete)
Ambiguity: $6$
Mass: $7$
Absolute Mass: $7/6$

Diagrams

Varying

These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.

Galois group: $A_4 \times C_2$ (show 1), $D_4 \times C_3$ (show 1), $C_2^2 \times A_4$ (show 1), $D_4\times A_4$ (show 1)
Hidden Artin slopes: $[2,2]^{2}$ (show 1), $[2]$ (show 1), $[2]^{2}$ (show 1), $[\ ]^{2}$ (show 1)
Indices of inseparability: $[3,2,0]$ (show 3), $[3,3,0]$ (show 1)
Associated inertia: $[1]$ (show 2), $[2]$ (show 2)
Jump Set: $[1,3,6]$

Fields


Showing all 4

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
2.3.4.18a1.1 $( x^{3} + x + 1 )^{4} + 2 ( x^{3} + x + 1 )^{3} + 2$ $D_4 \times C_3$ (as 12T14) $24$ $6$ $[2, 2]^{6}$ $[1,1]^{6}$ $[\ ]^{2}$ $[\ ]^{2}$ $[3, 3, 0]$ $[2]$ $z^3 + (t^2 + t)$ $[1, 3, 6]$
2.3.4.18a13.1 $( x^{3} + x + 1 )^{4} + \left(2 x^{2} + 2\right) ( x^{3} + x + 1 )^{3} + 2 x ( x^{3} + x + 1 )^{2} + 2$ $C_2^2 \times A_4$ (as 12T25) $48$ $4$ $[2, 2, 2]^{6}$ $[1,1,1]^{6}$ $[2]^{2}$ $[1]^{2}$ $[3, 2, 0]$ $[1]$ $z^3 + (t^2 + 1) z + t^2$ $[1, 3, 6]$
2.3.4.18a13.2 $( x^{3} + x + 1 )^{4} + \left(2 x^{2} + 2\right) ( x^{3} + x + 1 )^{3} + 2 x ( x^{3} + x + 1 )^{2} + 4 x + 2$ $A_4 \times C_2$ (as 12T7) $24$ $4$ $[2, 2, 2]^{3}$ $[1,1,1]^{3}$ $[2]$ $[1]$ $[3, 2, 0]$ $[1]$ $z^3 + (t^2 + 1) z + t^2$ $[1, 3, 6]$
2.3.4.18a19.1 $( x^{3} + x + 1 )^{4} + 2 x^{2} ( x^{3} + x + 1 )^{3} + \left(2 x + 2\right) ( x^{3} + x + 1 )^{2} + 2$ $D_4\times A_4$ (as 12T51) $96$ $2$ $[2, 2, 2, 2]^{6}$ $[1,1,1,1]^{6}$ $[2,2]^{2}$ $[1,1]^{2}$ $[3, 2, 0]$ $[2]$ $z^3 + t z + t$ $[1, 3, 6]$
  displayed columns for results