Properties

Label 2.1.2.2a1.1-2.4.12a
Base 2.1.2.2a1.1
Degree \(8\)
e \(4\)
f \(2\)
c \(12\)

Related objects

Downloads

Learn more

Defining polynomial over unramified subextension

$x^{4} + a_{3} \pi x^{3} + b_{2} \pi x^{2} + c_{4} \pi^{2} + \pi$

Invariants

Residue field characteristic: $2$
Degree: $8$
Base field: $\Q_{2}(\sqrt{-1})$
Ramification index $e$: $4$
Residue field degree $f$: $2$
Discriminant exponent $c$: $12$
Absolute Artin slopes: $[2,2,2]$
Swan slopes: $[1,1]$
Means: $\langle\frac{1}{2},\frac{3}{4}\rangle$
Rams: $(1,1)$
Field count: $9$ (complete)
Ambiguity: $8$
Mass: $12$
Absolute Mass: $3$

Diagrams

Varying

These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.

Galois group: $C_2^3:C_4$ (show 2), $C_2^2\times A_4$ (show 1), $C_2\wr C_4$ (show 2), $C_2^4:A_4$ (show 2), $C_2^5:C_8$ (show 2)
Hidden Artin slopes: $[2,2]^{4}$ (show 2), $[2,2]^{3}$ (show 2), $[\ ]^{3}$ (show 1), $[\ ]^{2}$ (show 2), $[2]^{2}$ (show 2)
Indices of inseparability: $[7,6,4,0]$ (show 6), $[7,6,6,0]$ (show 1), $[7,7,4,0]$ (show 1), $[7,7,7,0]$ (show 1)
Associated inertia: $[2]$ (show 4), $[3]$ (show 3), $[4]$ (show 2)
Jump Set: $[1,2,7,14]$ (show 3), $[1,3,7,14]$ (show 6)

Fields


Showing all 9

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
2.2.8.28a1.1 $( x^{2} + x + 1 )^{8} + 2 ( x^{2} + x + 1 )^{7} + 2$ $C_2^2\times A_4$ (as 16T58) $48$ $4$ $[2, 2, 2]^{6}$ $[1,1,1]^{6}$ $[\ ]^{3}$ $[\ ]^{3}$ $[7, 7, 7, 0]$ $[3]$ $z^7 + 1$ $[1, 3, 7, 14]$
2.2.8.28a6.1 $( x^{2} + x + 1 )^{8} + \left(2 x + 2\right) ( x^{2} + x + 1 )^{7} + 2 x ( x^{2} + x + 1 )^{6} + 2$ $C_2^5:C_8$ (as 16T587) $256$ $2$ $[2, 2, 2, 2, 2]^{8}$ $[1,1,1,1,1]^{8}$ $[2,2]^{4}$ $[1,1]^{4}$ $[7, 6, 6, 0]$ $[4]$ $z^7 + t z + t$ $[1, 3, 7, 14]$
2.2.8.28a10.1 $( x^{2} + x + 1 )^{8} + 2 ( x^{2} + x + 1 )^{7} + 2 ( x^{2} + x + 1 )^{6} + 2 ( x^{2} + x + 1 )^{4} + 2$ $C_2^3:C_4$ (as 16T33) $32$ $8$ $[2, 2, 2]^{4}$ $[1,1,1]^{4}$ $[\ ]^{2}$ $[\ ]^{2}$ $[7, 6, 4, 0]$ $[2]$ $z^7 + z^3 + z + 1$ $[1, 2, 7, 14]$
2.2.8.28a10.3 $( x^{2} + x + 1 )^{8} + 2 ( x^{2} + x + 1 )^{7} + 2 ( x^{2} + x + 1 )^{6} + 2 ( x^{2} + x + 1 )^{4} + 6$ $C_2^3:C_4$ (as 16T33) $32$ $8$ $[2, 2, 2]^{4}$ $[1,1,1]^{4}$ $[\ ]^{2}$ $[\ ]^{2}$ $[7, 6, 4, 0]$ $[2]$ $z^7 + z^3 + z + 1$ $[1, 2, 7, 14]$
2.2.8.28a14.1 $( x^{2} + x + 1 )^{8} + 2 x ( x^{2} + x + 1 )^{7} + 2 x ( x^{2} + x + 1 )^{6} + 2 ( x^{2} + x + 1 )^{4} + 2$ $C_2^4:A_4$ (as 16T416) $192$ $2$ $[2, 2, 2, 2, 2]^{6}$ $[1,1,1,1,1]^{6}$ $[2,2]^{3}$ $[1,1]^{3}$ $[7, 6, 4, 0]$ $[3]$ $z^7 + z^3 + t z + (t + 1)$ $[1, 2, 7, 14]$
2.2.8.28a17.1 $( x^{2} + x + 1 )^{8} + \left(2 x + 2\right) ( x^{2} + x + 1 )^{7} + 2 ( x^{2} + x + 1 )^{6} + 2 ( x^{2} + x + 1 )^{5} + 2 x ( x^{2} + x + 1 )^{4} + 2$ $C_2^5:C_8$ (as 16T587) $256$ $2$ $[2, 2, 2, 2, 2]^{8}$ $[1,1,1,1,1]^{8}$ $[2,2]^{4}$ $[1,1]^{4}$ $[7, 7, 4, 0]$ $[4]$ $z^7 + t z^3 + (t + 1)$ $[1, 3, 7, 14]$
2.2.8.28a19.1 $( x^{2} + x + 1 )^{8} + 2 x ( x^{2} + x + 1 )^{7} + 2 ( x^{2} + x + 1 )^{5} + 2 x ( x^{2} + x + 1 )^{4} + 2$ $C_2\wr C_4$ (as 16T171) $64$ $4$ $[2, 2, 2, 2]^{4}$ $[1,1,1,1]^{4}$ $[2]^{2}$ $[1]^{2}$ $[7, 6, 4, 0]$ $[2]$ $z^7 + t z^3 + z + t$ $[1, 3, 7, 14]$
2.2.8.28a19.3 $( x^{2} + x + 1 )^{8} + 2 x ( x^{2} + x + 1 )^{7} + 2 ( x^{2} + x + 1 )^{5} + 2 x ( x^{2} + x + 1 )^{4} + 6$ $C_2\wr C_4$ (as 16T171) $64$ $4$ $[2, 2, 2, 2]^{4}$ $[1,1,1,1]^{4}$ $[2]^{2}$ $[1]^{2}$ $[7, 6, 4, 0]$ $[2]$ $z^7 + t z^3 + z + t$ $[1, 3, 7, 14]$
2.2.8.28a24.1 $( x^{2} + x + 1 )^{8} + 2 x ( x^{2} + x + 1 )^{6} + 2 ( x^{2} + x + 1 )^{5} + 2 x ( x^{2} + x + 1 )^{4} + 2$ $C_2^4:A_4$ (as 16T416) $192$ $2$ $[2, 2, 2, 2, 2]^{6}$ $[1,1,1,1,1]^{6}$ $[2,2]^{3}$ $[1,1]^{3}$ $[7, 6, 4, 0]$ $[3]$ $z^7 + t z^3 + (t + 1) z + 1$ $[1, 3, 7, 14]$
  displayed columns for results