$x^{4} + a_{3} \pi x^{3} + b_{2} \pi x^{2} + c_{4} \pi^{2} + \pi$ |
These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
Galois group: | $C_2^3:C_4$ (show 2), $C_2^2\times A_4$ (show 1), $C_2\wr C_4$ (show 2), $C_2^4:A_4$ (show 2), $C_2^5:C_8$ (show 2) |
Hidden Artin slopes: | $[2,2]^{4}$ (show 2), $[2,2]^{3}$ (show 2), $[\ ]^{3}$ (show 1), $[\ ]^{2}$ (show 2), $[2]^{2}$ (show 2) |
Indices of inseparability: | $[7,6,4,0]$ (show 6), $[7,6,6,0]$ (show 1), $[7,7,4,0]$ (show 1), $[7,7,7,0]$ (show 1) |
Associated inertia: | $[2]$ (show 4), $[3]$ (show 3), $[4]$ (show 2) |
Jump Set: | $[1,2,7,14]$ (show 3), $[1,3,7,14]$ (show 6) |
Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
2.2.8.28a1.1 |
$( x^{2} + x + 1 )^{8} + 2 ( x^{2} + x + 1 )^{7} + 2$ |
$C_2^2\times A_4$ (as 16T58) |
$48$ |
$4$ |
$[2, 2, 2]^{6}$ |
$[1,1,1]^{6}$ |
$[\ ]^{3}$ |
$[\ ]^{3}$ |
$[7, 7, 7, 0]$ |
$[3]$ |
$z^7 + 1$ |
$[1, 3, 7, 14]$ |
2.2.8.28a6.1 |
$( x^{2} + x + 1 )^{8} + \left(2 x + 2\right) ( x^{2} + x + 1 )^{7} + 2 x ( x^{2} + x + 1 )^{6} + 2$ |
$C_2^5:C_8$ (as 16T587) |
$256$ |
$2$ |
$[2, 2, 2, 2, 2]^{8}$ |
$[1,1,1,1,1]^{8}$ |
$[2,2]^{4}$ |
$[1,1]^{4}$ |
$[7, 6, 6, 0]$ |
$[4]$ |
$z^7 + t z + t$ |
$[1, 3, 7, 14]$ |
2.2.8.28a10.1 |
$( x^{2} + x + 1 )^{8} + 2 ( x^{2} + x + 1 )^{7} + 2 ( x^{2} + x + 1 )^{6} + 2 ( x^{2} + x + 1 )^{4} + 2$ |
$C_2^3:C_4$ (as 16T33) |
$32$ |
$8$ |
$[2, 2, 2]^{4}$ |
$[1,1,1]^{4}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[7, 6, 4, 0]$ |
$[2]$ |
$z^7 + z^3 + z + 1$ |
$[1, 2, 7, 14]$ |
2.2.8.28a10.3 |
$( x^{2} + x + 1 )^{8} + 2 ( x^{2} + x + 1 )^{7} + 2 ( x^{2} + x + 1 )^{6} + 2 ( x^{2} + x + 1 )^{4} + 6$ |
$C_2^3:C_4$ (as 16T33) |
$32$ |
$8$ |
$[2, 2, 2]^{4}$ |
$[1,1,1]^{4}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[7, 6, 4, 0]$ |
$[2]$ |
$z^7 + z^3 + z + 1$ |
$[1, 2, 7, 14]$ |
2.2.8.28a14.1 |
$( x^{2} + x + 1 )^{8} + 2 x ( x^{2} + x + 1 )^{7} + 2 x ( x^{2} + x + 1 )^{6} + 2 ( x^{2} + x + 1 )^{4} + 2$ |
$C_2^4:A_4$ (as 16T416) |
$192$ |
$2$ |
$[2, 2, 2, 2, 2]^{6}$ |
$[1,1,1,1,1]^{6}$ |
$[2,2]^{3}$ |
$[1,1]^{3}$ |
$[7, 6, 4, 0]$ |
$[3]$ |
$z^7 + z^3 + t z + (t + 1)$ |
$[1, 2, 7, 14]$ |
2.2.8.28a17.1 |
$( x^{2} + x + 1 )^{8} + \left(2 x + 2\right) ( x^{2} + x + 1 )^{7} + 2 ( x^{2} + x + 1 )^{6} + 2 ( x^{2} + x + 1 )^{5} + 2 x ( x^{2} + x + 1 )^{4} + 2$ |
$C_2^5:C_8$ (as 16T587) |
$256$ |
$2$ |
$[2, 2, 2, 2, 2]^{8}$ |
$[1,1,1,1,1]^{8}$ |
$[2,2]^{4}$ |
$[1,1]^{4}$ |
$[7, 7, 4, 0]$ |
$[4]$ |
$z^7 + t z^3 + (t + 1)$ |
$[1, 3, 7, 14]$ |
2.2.8.28a19.1 |
$( x^{2} + x + 1 )^{8} + 2 x ( x^{2} + x + 1 )^{7} + 2 ( x^{2} + x + 1 )^{5} + 2 x ( x^{2} + x + 1 )^{4} + 2$ |
$C_2\wr C_4$ (as 16T171) |
$64$ |
$4$ |
$[2, 2, 2, 2]^{4}$ |
$[1,1,1,1]^{4}$ |
$[2]^{2}$ |
$[1]^{2}$ |
$[7, 6, 4, 0]$ |
$[2]$ |
$z^7 + t z^3 + z + t$ |
$[1, 3, 7, 14]$ |
2.2.8.28a19.3 |
$( x^{2} + x + 1 )^{8} + 2 x ( x^{2} + x + 1 )^{7} + 2 ( x^{2} + x + 1 )^{5} + 2 x ( x^{2} + x + 1 )^{4} + 6$ |
$C_2\wr C_4$ (as 16T171) |
$64$ |
$4$ |
$[2, 2, 2, 2]^{4}$ |
$[1,1,1,1]^{4}$ |
$[2]^{2}$ |
$[1]^{2}$ |
$[7, 6, 4, 0]$ |
$[2]$ |
$z^7 + t z^3 + z + t$ |
$[1, 3, 7, 14]$ |
2.2.8.28a24.1 |
$( x^{2} + x + 1 )^{8} + 2 x ( x^{2} + x + 1 )^{6} + 2 ( x^{2} + x + 1 )^{5} + 2 x ( x^{2} + x + 1 )^{4} + 2$ |
$C_2^4:A_4$ (as 16T416) |
$192$ |
$2$ |
$[2, 2, 2, 2, 2]^{6}$ |
$[1,1,1,1,1]^{6}$ |
$[2,2]^{3}$ |
$[1,1]^{3}$ |
$[7, 6, 4, 0]$ |
$[3]$ |
$z^7 + t z^3 + (t + 1) z + 1$ |
$[1, 3, 7, 14]$ |
Download
displayed columns for
results