Properties

Label 2.1.2.2a1.1-1.6.8a
Base 2.1.2.2a1.1
Degree \(6\)
e \(6\)
f \(1\)
c \(8\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{6} + b_{5} \pi x^{5} + a_{3} \pi x^{3} + c_{6} \pi^{2} + \pi$

Invariants

Residue field characteristic: $2$
Degree: $6$
Base field: $\Q_{2}(\sqrt{-1})$
Ramification index $e$: $6$
Residue field degree $f$: $1$
Discriminant exponent $c$: $8$
Absolute Artin slopes: $[2,2]$
Swan slopes: $[1]$
Means: $\langle\frac{1}{2}\rangle$
Rams: $(3)$
Field count: $2$ (complete)
Ambiguity: $2$
Mass: $2$
Absolute Mass: $1$

Diagrams

Varying

These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.

Galois group: $(C_6\times C_2):C_2$ (show 1), $\GL(2,\mathbb{Z}/4)$ (show 1)
Hidden Artin slopes: $[\frac{4}{3},\frac{4}{3}]^{2}$ (show 1), $[\ ]^{2}$ (show 1)
Indices of inseparability: $[9,9,0]$
Associated inertia: $[2,2]$
Jump Set: $[3,9,18]$

Fields


Showing all 2

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
2.1.12.20a1.1 $x^{12} + 2 x^{9} + 2$ $(C_6\times C_2):C_2$ (as 12T13) $24$ $2$ $[2, 2]_{3}^{2}$ $[1,1]_{3}^{2}$ $[\ ]^{2}$ $[\ ]^{2}$ $[9, 9, 0]$ $[2, 2]$ $z^8 + z^4 + 1,z^3 + 1$ $[3, 9, 18]$
2.1.12.20a1.7 $x^{12} + 2 x^{11} + 2 x^{10} + 2 x^{9} + 2$ $\GL(2,\mathbb{Z}/4)$ (as 12T52) $96$ $2$ $[\frac{4}{3}, \frac{4}{3}, 2, 2]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1,1]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3}]^{2}$ $[\frac{1}{3},\frac{1}{3}]^{2}$ $[9, 9, 0]$ $[2, 2]$ $z^8 + z^4 + 1,z^3 + 1$ $[3, 9, 18]$
  displayed columns for results