| $x^{4} + a_{1} \pi x + \pi$ |
These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
| Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
| 2.1.8.12b1.3 |
$x^{8} + 2 x^{7} + 2 x^{5} + 2 x^{2} + 2$ |
$S_4\times C_2$ (as 8T24) |
$48$ |
$2$ |
$[\frac{4}{3}, \frac{4}{3}, 2]_{3}^{2}$ |
$[\frac{1}{3},\frac{1}{3},1]_{3}^{2}$ |
$[\ ]^{2}_{3}$ |
$[\ ]^{2}_{3}$ |
$[5, 2, 2, 0]$ |
$[1, 1]$ |
$z^2 + 1,z + 1$ |
$[1, 2, 5, 10]$ |
Download
displayed columns for
results