Properties

Label 2.1.2.2a1.1-1.4.4a
Base 2.1.2.2a1.1
Degree \(4\)
e \(4\)
f \(1\)
c \(4\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{4} + a_{1} \pi x + \pi$

Invariants

Residue field characteristic: $2$
Degree: $4$
Base field: $\Q_{2}(\sqrt{-1})$
Ramification index $e$: $4$
Residue field degree $f$: $1$
Discriminant exponent $c$: $4$
Absolute Artin slopes: $[\frac{4}{3},\frac{4}{3},2]$
Swan slopes: $[\frac{1}{3},\frac{1}{3}]$
Means: $\langle\frac{1}{6},\frac{1}{4}\rangle$
Rams: $(\frac{1}{3},\frac{1}{3})$
Field count: $1$ (complete)
Ambiguity: $1$
Mass: $1$
Absolute Mass: $1/2$

Diagrams

Varying

These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.

Galois group: $S_4\times C_2$
Hidden Artin slopes: $[\ ]^{2}_{3}$
Indices of inseparability: $[5,2,2,0]$
Associated inertia: $[1,1]$
Jump Set: $[1,2,5,10]$

Fields


Showing all 1

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
2.1.8.12b1.3 $x^{8} + 2 x^{7} + 2 x^{5} + 2 x^{2} + 2$ $S_4\times C_2$ (as 8T24) $48$ $2$ $[\frac{4}{3}, \frac{4}{3}, 2]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},1]_{3}^{2}$ $[\ ]^{2}_{3}$ $[\ ]^{2}_{3}$ $[5, 2, 2, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 2, 5, 10]$
  displayed columns for results