$x^{4} + b_{11} \pi^{3} x^{3} + \left(b_{10} \pi^{3} + b_{6} \pi^{2}\right) x^{2} + a_{9} \pi^{3} x + c_{12} \pi^{4} + \pi$ |
These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
Galois group: | $Q_8:C_2$ (show 4), $C_2^3 : C_4 $ (show 2), $C_2^4:C_6$ (show 2) |
Hidden Artin slopes: | $[\ ]^{2}$ (show 4), $[\ ]^{4}$ (show 2), $[2,2]^{3}$ (show 2) |
Indices of inseparability: | $[13,10,4,0]$ (show 2), $[13,12,4,0]$ (show 6) |
Associated inertia: | $[1,2]$ (show 6), $[1,3]$ (show 2) |
Jump Set: | $[1,2,13,21]$ (show 2), $[1,5,10,18]$ (show 2), $[1,5,15,23]$ (show 2), $[1,5,16,24]$ (show 2) |
Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
2.1.8.20d1.1 |
$x^{8} + 4 x^{5} + 2 x^{4} + 2$ |
$Q_8:C_2$ (as 8T11) |
$16$ |
$4$ |
$[2, 3, 3]^{2}$ |
$[1,2,2]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[13, 12, 4, 0]$ |
$[1, 2]$ |
$z^4 + 1,z^3 + 1$ |
$[1, 5, 10, 18]$ |
2.1.8.20d1.2 |
$x^{8} + 4 x^{5} + 2 x^{4} + 10$ |
$Q_8:C_2$ (as 8T11) |
$16$ |
$4$ |
$[2, 3, 3]^{2}$ |
$[1,2,2]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[13, 12, 4, 0]$ |
$[1, 2]$ |
$z^4 + 1,z^3 + 1$ |
$[1, 5, 16, 24]$ |
2.1.8.20d1.3 |
$x^{8} + 4 x^{7} + 4 x^{5} + 2 x^{4} + 2$ |
$C_2^3 : C_4 $ (as 8T19) |
$32$ |
$2$ |
$[2, 3, 3]^{4}$ |
$[1,2,2]^{4}$ |
$[\ ]^{4}$ |
$[\ ]^{4}$ |
$[13, 12, 4, 0]$ |
$[1, 2]$ |
$z^4 + 1,z^3 + 1$ |
$[1, 5, 15, 23]$ |
2.1.8.20d1.4 |
$x^{8} + 4 x^{6} + 4 x^{5} + 2 x^{4} + 2$ |
$C_2^3 : C_4 $ (as 8T19) |
$32$ |
$2$ |
$[2, 3, 3]^{4}$ |
$[1,2,2]^{4}$ |
$[\ ]^{4}$ |
$[\ ]^{4}$ |
$[13, 12, 4, 0]$ |
$[1, 2]$ |
$z^4 + 1,z^3 + 1$ |
$[1, 5, 15, 23]$ |
2.1.8.20d1.5 |
$x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{5} + 2 x^{4} + 2$ |
$Q_8:C_2$ (as 8T11) |
$16$ |
$4$ |
$[2, 3, 3]^{2}$ |
$[1,2,2]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[13, 12, 4, 0]$ |
$[1, 2]$ |
$z^4 + 1,z^3 + 1$ |
$[1, 5, 10, 18]$ |
2.1.8.20d1.6 |
$x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{5} + 2 x^{4} + 10$ |
$Q_8:C_2$ (as 8T11) |
$16$ |
$4$ |
$[2, 3, 3]^{2}$ |
$[1,2,2]^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[13, 12, 4, 0]$ |
$[1, 2]$ |
$z^4 + 1,z^3 + 1$ |
$[1, 5, 16, 24]$ |
2.1.8.20d2.1 |
$x^{8} + 4 x^{5} + 2 x^{4} + 4 x^{2} + 2$ |
$C_2^4:C_6$ (as 8T33) |
$96$ |
$1$ |
$[2, 2, 2, 3, 3]^{3}$ |
$[1,1,1,2,2]^{3}$ |
$[2,2]^{3}$ |
$[1,1]^{3}$ |
$[13, 10, 4, 0]$ |
$[1, 3]$ |
$z^4 + 1,z^3 + z + 1$ |
$[1, 2, 13, 21]$ |
2.1.8.20d2.2 |
$x^{8} + 4 x^{7} + 4 x^{5} + 2 x^{4} + 4 x^{2} + 2$ |
$C_2^4:C_6$ (as 8T33) |
$96$ |
$1$ |
$[2, 2, 2, 3, 3]^{3}$ |
$[1,1,1,2,2]^{3}$ |
$[2,2]^{3}$ |
$[1,1]^{3}$ |
$[13, 10, 4, 0]$ |
$[1, 3]$ |
$z^4 + 1,z^3 + z + 1$ |
$[1, 2, 13, 21]$ |
Download
displayed columns for
results