Properties

Label 2.1.2.2a1.1-1.3.2a
Base 2.1.2.2a1.1
Degree \(3\)
e \(3\)
f \(1\)
c \(2\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{3} + \pi$

Invariants

Residue field characteristic: $2$
Degree: $3$
Base field: $\Q_{2}(\sqrt{-1})$
Ramification index $e$: $3$
Residue field degree $f$: $1$
Discriminant exponent $c$: $2$
Absolute Artin slopes: $[2]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $1$ (complete)
Ambiguity: $1$
Mass: $1$
Absolute Mass: $1/2$

Varying

These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.

Galois group: $D_{6}$
Hidden Artin slopes: $[\ ]^{2}$
Indices of inseparability: $[3,0]$
Associated inertia: $[2,1]$
Jump Set: $[3,6]$

Fields


Showing all 1

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
2.1.6.8a1.1 $x^{6} + 2 x^{3} + 2$ $D_{6}$ (as 6T3) $12$ $2$ $[2]_{3}^{2}$ $[1]_{3}^{2}$ $[\ ]^{2}$ $[\ ]^{2}$ $[3, 0]$ $[2, 1]$ $z^4 + z^2 + 1,z + 1$ $[3, 6]$
  displayed columns for results