Properties

Label 2.1.16.66g
Base 2.1.1.0a1.1
Degree \(16\)
e \(16\)
f \(1\)
c \(66\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{16} + \left(8 b_{46} + 16 c_{62}\right) x^{14} + 16 b_{61} x^{13} + 4 b_{28} x^{12} + 16 b_{59} x^{11} + 8 b_{42} x^{10} + 16 b_{57} x^{9} + \left(2 a_{8} + 8 c_{40} + 16 c_{56}\right) x^{8} + 16 b_{55} x^{7} + 16 b_{54} x^{6} + 16 b_{53} x^{5} + 8 b_{36} x^{4} + 16 a_{51} x^{3} + 16 b_{50} x^{2} + 4 c_{16} + 2$

Invariants

Residue field characteristic: $2$
Degree: $16$
Base field: $\Q_{2}$
Ramification index $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $66$
Artin slopes: $[2,\frac{7}{2},\frac{9}{2},\frac{39}{8}]$
Swan slopes: $[1,\frac{5}{2},\frac{7}{2},\frac{31}{8}]$
Means: $\langle\frac{1}{2},\frac{3}{2},\frac{5}{2},\frac{51}{16}\rangle$
Rams: $(1,4,8,11)$
Field count: $4096$ (complete)
Ambiguity: $16$
Mass: $2048$
Absolute Mass: $2048$

Diagrams

Varying

Indices of inseparability: $[51,40,24,8,0]$
Associated inertia: $[1,1,1,1]$
Jump Set: $[1,2,4,8,32]$ (show 2048), $[1,5,13,29,45]$ (show 2048)

Galois groups and Hidden Artin slopes

Select desired size of Galois group. Note that the following data has not all been computed for fields in this family, so the tables below are incomplete.

Fields


Showing 1-50 of at least 1000

Next   To download results, determine the number of results.
Label Packet size Polynomial Galois group Galois degree $\#\Aut(K/\Q_p)$ Artin slope content Swan slope content Hidden Artin slopes Hidden Swan slopes Ind. of Insep. Assoc. Inertia Resid. Poly Jump Set
2.1.16.66g1.2049 $x^{16} + 2 x^{8} + 16 x^{3} + 6$ $(C_2^2\times C_4^2):\SD_{16}$ (as 16T1270) $1024$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ $[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ $[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ $[51, 40, 24, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.66g1.2050 $x^{16} + 16 x^{14} + 2 x^{8} + 16 x^{3} + 6$ $(C_2^2\times C_4^2):\SD_{16}$ (as 16T1270) $1024$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ $[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ $[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ $[51, 40, 24, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.66g1.2051 $x^{16} + 16 x^{13} + 2 x^{8} + 16 x^{3} + 6$ $(C_2^2\times C_4^2):\SD_{16}$ (as 16T1270) $1024$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ $[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ $[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ $[51, 40, 24, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.66g1.2052 $x^{16} + 16 x^{14} + 16 x^{13} + 2 x^{8} + 16 x^{3} + 6$ $(C_2^2\times C_4^2):\SD_{16}$ (as 16T1270) $1024$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ $[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ $[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ $[51, 40, 24, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.66g1.2053 $x^{16} + 16 x^{9} + 2 x^{8} + 16 x^{3} + 6$ $C_2^6:\SD_{16}$ (as 16T1256) $1024$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ $[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ $[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ $[51, 40, 24, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.66g1.2054 $x^{16} + 16 x^{14} + 16 x^{9} + 2 x^{8} + 16 x^{3} + 6$ $C_2^6:\SD_{16}$ (as 16T1256) $1024$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ $[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ $[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ $[51, 40, 24, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.66g1.2055 $x^{16} + 16 x^{13} + 16 x^{9} + 2 x^{8} + 16 x^{3} + 6$ $C_2^6:\SD_{16}$ (as 16T1256) $1024$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ $[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ $[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ $[51, 40, 24, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.66g1.2056 $x^{16} + 16 x^{14} + 16 x^{13} + 16 x^{9} + 2 x^{8} + 16 x^{3} + 6$ $C_2^6:\SD_{16}$ (as 16T1256) $1024$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ $[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ $[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ $[51, 40, 24, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.66g1.2057 $x^{16} + 18 x^{8} + 16 x^{3} + 6$ $(C_2^2\times C_4^2):\SD_{16}$ (as 16T1270) $1024$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ $[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ $[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ $[51, 40, 24, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.66g1.2058 $x^{16} + 16 x^{14} + 18 x^{8} + 16 x^{3} + 6$ $(C_2^2\times C_4^2):\SD_{16}$ (as 16T1270) $1024$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ $[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ $[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ $[51, 40, 24, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.66g1.2059 $x^{16} + 16 x^{13} + 18 x^{8} + 16 x^{3} + 6$ $(C_2^2\times C_4^2):\SD_{16}$ (as 16T1270) $1024$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ $[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ $[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ $[51, 40, 24, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.66g1.2060 $x^{16} + 16 x^{14} + 16 x^{13} + 18 x^{8} + 16 x^{3} + 6$ $(C_2^2\times C_4^2):\SD_{16}$ (as 16T1270) $1024$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ $[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ $[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ $[51, 40, 24, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.66g1.2061 $x^{16} + 16 x^{9} + 18 x^{8} + 16 x^{3} + 6$ $C_2^6:\SD_{16}$ (as 16T1256) $1024$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ $[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ $[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ $[51, 40, 24, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.66g1.2062 $x^{16} + 16 x^{14} + 16 x^{9} + 18 x^{8} + 16 x^{3} + 6$ $C_2^6:\SD_{16}$ (as 16T1256) $1024$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ $[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ $[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ $[51, 40, 24, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.66g1.2063 $x^{16} + 16 x^{13} + 16 x^{9} + 18 x^{8} + 16 x^{3} + 6$ $C_2^6:\SD_{16}$ (as 16T1256) $1024$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ $[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ $[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ $[51, 40, 24, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.66g1.2064 $x^{16} + 16 x^{14} + 16 x^{13} + 16 x^{9} + 18 x^{8} + 16 x^{3} + 6$ $C_2^6:\SD_{16}$ (as 16T1256) $1024$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ $[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ $[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ $[51, 40, 24, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.66g1.2065 $x^{16} + 2 x^{8} + 16 x^{6} + 16 x^{3} + 6$ $C_2^6:\SD_{16}$ (as 16T1256) $1024$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ $[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ $[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ $[51, 40, 24, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.66g1.2066 $x^{16} + 16 x^{14} + 2 x^{8} + 16 x^{6} + 16 x^{3} + 6$ $C_2^6:\SD_{16}$ (as 16T1256) $1024$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ $[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ $[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ $[51, 40, 24, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.66g1.2067 $x^{16} + 16 x^{13} + 2 x^{8} + 16 x^{6} + 16 x^{3} + 6$ $C_2^6:\SD_{16}$ (as 16T1256) $1024$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ $[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ $[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ $[51, 40, 24, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.66g1.2068 $x^{16} + 16 x^{14} + 16 x^{13} + 2 x^{8} + 16 x^{6} + 16 x^{3} + 6$ $C_2^6:\SD_{16}$ (as 16T1256) $1024$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ $[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ $[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ $[51, 40, 24, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.66g1.2069 $x^{16} + 16 x^{9} + 2 x^{8} + 16 x^{6} + 16 x^{3} + 6$ $(C_2^2\times C_4^2):\SD_{16}$ (as 16T1270) $1024$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ $[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ $[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ $[51, 40, 24, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.66g1.2070 $x^{16} + 16 x^{14} + 16 x^{9} + 2 x^{8} + 16 x^{6} + 16 x^{3} + 6$ $(C_2^2\times C_4^2):\SD_{16}$ (as 16T1270) $1024$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ $[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ $[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ $[51, 40, 24, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.66g1.2071 $x^{16} + 16 x^{13} + 16 x^{9} + 2 x^{8} + 16 x^{6} + 16 x^{3} + 6$ $(C_2^2\times C_4^2):\SD_{16}$ (as 16T1270) $1024$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ $[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ $[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ $[51, 40, 24, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.66g1.2072 $x^{16} + 16 x^{14} + 16 x^{13} + 16 x^{9} + 2 x^{8} + 16 x^{6} + 16 x^{3} + 6$ $(C_2^2\times C_4^2):\SD_{16}$ (as 16T1270) $1024$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ $[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ $[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ $[51, 40, 24, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.66g1.2073 $x^{16} + 18 x^{8} + 16 x^{6} + 16 x^{3} + 6$ $C_2^6:\SD_{16}$ (as 16T1256) $1024$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ $[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ $[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ $[51, 40, 24, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.66g1.2074 $x^{16} + 16 x^{14} + 18 x^{8} + 16 x^{6} + 16 x^{3} + 6$ $C_2^6:\SD_{16}$ (as 16T1256) $1024$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ $[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ $[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ $[51, 40, 24, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.66g1.2075 $x^{16} + 16 x^{13} + 18 x^{8} + 16 x^{6} + 16 x^{3} + 6$ $C_2^6:\SD_{16}$ (as 16T1256) $1024$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ $[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ $[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ $[51, 40, 24, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.66g1.2076 $x^{16} + 16 x^{14} + 16 x^{13} + 18 x^{8} + 16 x^{6} + 16 x^{3} + 6$ $C_2^6:\SD_{16}$ (as 16T1256) $1024$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ $[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ $[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ $[51, 40, 24, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.66g1.2077 $x^{16} + 16 x^{9} + 18 x^{8} + 16 x^{6} + 16 x^{3} + 6$ $(C_2^2\times C_4^2):\SD_{16}$ (as 16T1270) $1024$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ $[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ $[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ $[51, 40, 24, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.66g1.2078 $x^{16} + 16 x^{14} + 16 x^{9} + 18 x^{8} + 16 x^{6} + 16 x^{3} + 6$ $(C_2^2\times C_4^2):\SD_{16}$ (as 16T1270) $1024$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ $[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ $[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ $[51, 40, 24, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.66g1.2079 $x^{16} + 16 x^{13} + 16 x^{9} + 18 x^{8} + 16 x^{6} + 16 x^{3} + 6$ $(C_2^2\times C_4^2):\SD_{16}$ (as 16T1270) $1024$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ $[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ $[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ $[51, 40, 24, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.66g1.2080 $x^{16} + 16 x^{14} + 16 x^{13} + 16 x^{9} + 18 x^{8} + 16 x^{6} + 16 x^{3} + 6$ $(C_2^2\times C_4^2):\SD_{16}$ (as 16T1270) $1024$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ $[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ $[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ $[51, 40, 24, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.66g1.2081 $x^{16} + 2 x^{8} + 16 x^{3} + 16 x^{2} + 6$ $(C_2^2\times C_4^2):\SD_{16}$ (as 16T1270) $1024$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ $[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ $[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ $[51, 40, 24, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.66g1.2082 $x^{16} + 16 x^{14} + 2 x^{8} + 16 x^{3} + 16 x^{2} + 6$ $(C_2^2\times C_4^2):\SD_{16}$ (as 16T1270) $1024$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ $[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ $[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ $[51, 40, 24, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.66g1.2083 $x^{16} + 16 x^{13} + 2 x^{8} + 16 x^{3} + 16 x^{2} + 6$ $(C_2^2\times C_4^2):\SD_{16}$ (as 16T1270) $1024$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ $[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ $[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ $[51, 40, 24, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.66g1.2084 $x^{16} + 16 x^{14} + 16 x^{13} + 2 x^{8} + 16 x^{3} + 16 x^{2} + 6$ $(C_2^2\times C_4^2):\SD_{16}$ (as 16T1270) $1024$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ $[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ $[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ $[51, 40, 24, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.66g1.2085 $x^{16} + 16 x^{9} + 2 x^{8} + 16 x^{3} + 16 x^{2} + 6$ $C_2^6:\SD_{16}$ (as 16T1256) $1024$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ $[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ $[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ $[51, 40, 24, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.66g1.2086 $x^{16} + 16 x^{14} + 16 x^{9} + 2 x^{8} + 16 x^{3} + 16 x^{2} + 6$ $C_2^6:\SD_{16}$ (as 16T1256) $1024$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ $[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ $[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ $[51, 40, 24, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.66g1.2087 $x^{16} + 16 x^{13} + 16 x^{9} + 2 x^{8} + 16 x^{3} + 16 x^{2} + 6$ $C_2^6:\SD_{16}$ (as 16T1256) $1024$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ $[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ $[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ $[51, 40, 24, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.66g1.2088 $x^{16} + 16 x^{14} + 16 x^{13} + 16 x^{9} + 2 x^{8} + 16 x^{3} + 16 x^{2} + 6$ $C_2^6:\SD_{16}$ (as 16T1256) $1024$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ $[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ $[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ $[51, 40, 24, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.66g1.2089 $x^{16} + 18 x^{8} + 16 x^{3} + 16 x^{2} + 6$ $(C_2^2\times C_4^2):\SD_{16}$ (as 16T1270) $1024$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ $[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ $[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ $[51, 40, 24, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.66g1.2090 $x^{16} + 16 x^{14} + 18 x^{8} + 16 x^{3} + 16 x^{2} + 6$ $(C_2^2\times C_4^2):\SD_{16}$ (as 16T1270) $1024$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ $[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ $[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ $[51, 40, 24, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.66g1.2091 $x^{16} + 16 x^{13} + 18 x^{8} + 16 x^{3} + 16 x^{2} + 6$ $(C_2^2\times C_4^2):\SD_{16}$ (as 16T1270) $1024$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ $[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ $[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ $[51, 40, 24, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.66g1.2092 $x^{16} + 16 x^{14} + 16 x^{13} + 18 x^{8} + 16 x^{3} + 16 x^{2} + 6$ $(C_2^2\times C_4^2):\SD_{16}$ (as 16T1270) $1024$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ $[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ $[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ $[51, 40, 24, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.66g1.2093 $x^{16} + 16 x^{9} + 18 x^{8} + 16 x^{3} + 16 x^{2} + 6$ $C_2^6:\SD_{16}$ (as 16T1256) $1024$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ $[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ $[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ $[51, 40, 24, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.66g1.2094 $x^{16} + 16 x^{14} + 16 x^{9} + 18 x^{8} + 16 x^{3} + 16 x^{2} + 6$ $C_2^6:\SD_{16}$ (as 16T1256) $1024$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ $[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ $[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ $[51, 40, 24, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.66g1.2095 $x^{16} + 16 x^{13} + 16 x^{9} + 18 x^{8} + 16 x^{3} + 16 x^{2} + 6$ $C_2^6:\SD_{16}$ (as 16T1256) $1024$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ $[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ $[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ $[51, 40, 24, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.66g1.2096 $x^{16} + 16 x^{14} + 16 x^{13} + 16 x^{9} + 18 x^{8} + 16 x^{3} + 16 x^{2} + 6$ $C_2^6:\SD_{16}$ (as 16T1256) $1024$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ $[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ $[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ $[51, 40, 24, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.66g1.2097 $x^{16} + 2 x^{8} + 16 x^{6} + 16 x^{3} + 16 x^{2} + 6$ $C_2^6:\SD_{16}$ (as 16T1256) $1024$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ $[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ $[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ $[51, 40, 24, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
2.1.16.66g1.2098 $x^{16} + 16 x^{14} + 2 x^{8} + 16 x^{6} + 16 x^{3} + 16 x^{2} + 6$ $C_2^6:\SD_{16}$ (as 16T1256) $1024$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ $[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ $[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ $[51, 40, 24, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 4, 8, 32]$
Next   To download results, determine the number of results.