Select desired size of Galois group. Note that the following data has not all been computed for fields in this family, so the tables below are incomplete.
| Label |
Packet size |
Polynomial |
Galois group |
Galois degree |
$\#\Aut(K/\Q_p)$ |
Artin slope content |
Swan slope content |
Hidden Artin slopes |
Hidden Swan slopes |
Ind. of Insep. |
Assoc. Inertia |
Resid. Poly |
Jump Set |
| 2.1.16.66g1.2049 |
|
$x^{16} + 2 x^{8} + 16 x^{3} + 6$ |
$(C_2^2\times C_4^2):\SD_{16}$ (as 16T1270) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.66g1.2050 |
|
$x^{16} + 16 x^{14} + 2 x^{8} + 16 x^{3} + 6$ |
$(C_2^2\times C_4^2):\SD_{16}$ (as 16T1270) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.66g1.2051 |
|
$x^{16} + 16 x^{13} + 2 x^{8} + 16 x^{3} + 6$ |
$(C_2^2\times C_4^2):\SD_{16}$ (as 16T1270) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.66g1.2052 |
|
$x^{16} + 16 x^{14} + 16 x^{13} + 2 x^{8} + 16 x^{3} + 6$ |
$(C_2^2\times C_4^2):\SD_{16}$ (as 16T1270) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.66g1.2053 |
|
$x^{16} + 16 x^{9} + 2 x^{8} + 16 x^{3} + 6$ |
$C_2^6:\SD_{16}$ (as 16T1256) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.66g1.2054 |
|
$x^{16} + 16 x^{14} + 16 x^{9} + 2 x^{8} + 16 x^{3} + 6$ |
$C_2^6:\SD_{16}$ (as 16T1256) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.66g1.2055 |
|
$x^{16} + 16 x^{13} + 16 x^{9} + 2 x^{8} + 16 x^{3} + 6$ |
$C_2^6:\SD_{16}$ (as 16T1256) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.66g1.2056 |
|
$x^{16} + 16 x^{14} + 16 x^{13} + 16 x^{9} + 2 x^{8} + 16 x^{3} + 6$ |
$C_2^6:\SD_{16}$ (as 16T1256) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.66g1.2057 |
|
$x^{16} + 18 x^{8} + 16 x^{3} + 6$ |
$(C_2^2\times C_4^2):\SD_{16}$ (as 16T1270) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.66g1.2058 |
|
$x^{16} + 16 x^{14} + 18 x^{8} + 16 x^{3} + 6$ |
$(C_2^2\times C_4^2):\SD_{16}$ (as 16T1270) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.66g1.2059 |
|
$x^{16} + 16 x^{13} + 18 x^{8} + 16 x^{3} + 6$ |
$(C_2^2\times C_4^2):\SD_{16}$ (as 16T1270) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.66g1.2060 |
|
$x^{16} + 16 x^{14} + 16 x^{13} + 18 x^{8} + 16 x^{3} + 6$ |
$(C_2^2\times C_4^2):\SD_{16}$ (as 16T1270) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.66g1.2061 |
|
$x^{16} + 16 x^{9} + 18 x^{8} + 16 x^{3} + 6$ |
$C_2^6:\SD_{16}$ (as 16T1256) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.66g1.2062 |
|
$x^{16} + 16 x^{14} + 16 x^{9} + 18 x^{8} + 16 x^{3} + 6$ |
$C_2^6:\SD_{16}$ (as 16T1256) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.66g1.2063 |
|
$x^{16} + 16 x^{13} + 16 x^{9} + 18 x^{8} + 16 x^{3} + 6$ |
$C_2^6:\SD_{16}$ (as 16T1256) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.66g1.2064 |
|
$x^{16} + 16 x^{14} + 16 x^{13} + 16 x^{9} + 18 x^{8} + 16 x^{3} + 6$ |
$C_2^6:\SD_{16}$ (as 16T1256) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.66g1.2065 |
|
$x^{16} + 2 x^{8} + 16 x^{6} + 16 x^{3} + 6$ |
$C_2^6:\SD_{16}$ (as 16T1256) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.66g1.2066 |
|
$x^{16} + 16 x^{14} + 2 x^{8} + 16 x^{6} + 16 x^{3} + 6$ |
$C_2^6:\SD_{16}$ (as 16T1256) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.66g1.2067 |
|
$x^{16} + 16 x^{13} + 2 x^{8} + 16 x^{6} + 16 x^{3} + 6$ |
$C_2^6:\SD_{16}$ (as 16T1256) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.66g1.2068 |
|
$x^{16} + 16 x^{14} + 16 x^{13} + 2 x^{8} + 16 x^{6} + 16 x^{3} + 6$ |
$C_2^6:\SD_{16}$ (as 16T1256) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.66g1.2069 |
|
$x^{16} + 16 x^{9} + 2 x^{8} + 16 x^{6} + 16 x^{3} + 6$ |
$(C_2^2\times C_4^2):\SD_{16}$ (as 16T1270) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.66g1.2070 |
|
$x^{16} + 16 x^{14} + 16 x^{9} + 2 x^{8} + 16 x^{6} + 16 x^{3} + 6$ |
$(C_2^2\times C_4^2):\SD_{16}$ (as 16T1270) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.66g1.2071 |
|
$x^{16} + 16 x^{13} + 16 x^{9} + 2 x^{8} + 16 x^{6} + 16 x^{3} + 6$ |
$(C_2^2\times C_4^2):\SD_{16}$ (as 16T1270) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.66g1.2072 |
|
$x^{16} + 16 x^{14} + 16 x^{13} + 16 x^{9} + 2 x^{8} + 16 x^{6} + 16 x^{3} + 6$ |
$(C_2^2\times C_4^2):\SD_{16}$ (as 16T1270) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.66g1.2073 |
|
$x^{16} + 18 x^{8} + 16 x^{6} + 16 x^{3} + 6$ |
$C_2^6:\SD_{16}$ (as 16T1256) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.66g1.2074 |
|
$x^{16} + 16 x^{14} + 18 x^{8} + 16 x^{6} + 16 x^{3} + 6$ |
$C_2^6:\SD_{16}$ (as 16T1256) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.66g1.2075 |
|
$x^{16} + 16 x^{13} + 18 x^{8} + 16 x^{6} + 16 x^{3} + 6$ |
$C_2^6:\SD_{16}$ (as 16T1256) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.66g1.2076 |
|
$x^{16} + 16 x^{14} + 16 x^{13} + 18 x^{8} + 16 x^{6} + 16 x^{3} + 6$ |
$C_2^6:\SD_{16}$ (as 16T1256) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.66g1.2077 |
|
$x^{16} + 16 x^{9} + 18 x^{8} + 16 x^{6} + 16 x^{3} + 6$ |
$(C_2^2\times C_4^2):\SD_{16}$ (as 16T1270) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.66g1.2078 |
|
$x^{16} + 16 x^{14} + 16 x^{9} + 18 x^{8} + 16 x^{6} + 16 x^{3} + 6$ |
$(C_2^2\times C_4^2):\SD_{16}$ (as 16T1270) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.66g1.2079 |
|
$x^{16} + 16 x^{13} + 16 x^{9} + 18 x^{8} + 16 x^{6} + 16 x^{3} + 6$ |
$(C_2^2\times C_4^2):\SD_{16}$ (as 16T1270) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.66g1.2080 |
|
$x^{16} + 16 x^{14} + 16 x^{13} + 16 x^{9} + 18 x^{8} + 16 x^{6} + 16 x^{3} + 6$ |
$(C_2^2\times C_4^2):\SD_{16}$ (as 16T1270) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.66g1.2081 |
|
$x^{16} + 2 x^{8} + 16 x^{3} + 16 x^{2} + 6$ |
$(C_2^2\times C_4^2):\SD_{16}$ (as 16T1270) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.66g1.2082 |
|
$x^{16} + 16 x^{14} + 2 x^{8} + 16 x^{3} + 16 x^{2} + 6$ |
$(C_2^2\times C_4^2):\SD_{16}$ (as 16T1270) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.66g1.2083 |
|
$x^{16} + 16 x^{13} + 2 x^{8} + 16 x^{3} + 16 x^{2} + 6$ |
$(C_2^2\times C_4^2):\SD_{16}$ (as 16T1270) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.66g1.2084 |
|
$x^{16} + 16 x^{14} + 16 x^{13} + 2 x^{8} + 16 x^{3} + 16 x^{2} + 6$ |
$(C_2^2\times C_4^2):\SD_{16}$ (as 16T1270) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.66g1.2085 |
|
$x^{16} + 16 x^{9} + 2 x^{8} + 16 x^{3} + 16 x^{2} + 6$ |
$C_2^6:\SD_{16}$ (as 16T1256) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.66g1.2086 |
|
$x^{16} + 16 x^{14} + 16 x^{9} + 2 x^{8} + 16 x^{3} + 16 x^{2} + 6$ |
$C_2^6:\SD_{16}$ (as 16T1256) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.66g1.2087 |
|
$x^{16} + 16 x^{13} + 16 x^{9} + 2 x^{8} + 16 x^{3} + 16 x^{2} + 6$ |
$C_2^6:\SD_{16}$ (as 16T1256) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.66g1.2088 |
|
$x^{16} + 16 x^{14} + 16 x^{13} + 16 x^{9} + 2 x^{8} + 16 x^{3} + 16 x^{2} + 6$ |
$C_2^6:\SD_{16}$ (as 16T1256) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.66g1.2089 |
|
$x^{16} + 18 x^{8} + 16 x^{3} + 16 x^{2} + 6$ |
$(C_2^2\times C_4^2):\SD_{16}$ (as 16T1270) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.66g1.2090 |
|
$x^{16} + 16 x^{14} + 18 x^{8} + 16 x^{3} + 16 x^{2} + 6$ |
$(C_2^2\times C_4^2):\SD_{16}$ (as 16T1270) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.66g1.2091 |
|
$x^{16} + 16 x^{13} + 18 x^{8} + 16 x^{3} + 16 x^{2} + 6$ |
$(C_2^2\times C_4^2):\SD_{16}$ (as 16T1270) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.66g1.2092 |
|
$x^{16} + 16 x^{14} + 16 x^{13} + 18 x^{8} + 16 x^{3} + 16 x^{2} + 6$ |
$(C_2^2\times C_4^2):\SD_{16}$ (as 16T1270) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.66g1.2093 |
|
$x^{16} + 16 x^{9} + 18 x^{8} + 16 x^{3} + 16 x^{2} + 6$ |
$C_2^6:\SD_{16}$ (as 16T1256) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.66g1.2094 |
|
$x^{16} + 16 x^{14} + 16 x^{9} + 18 x^{8} + 16 x^{3} + 16 x^{2} + 6$ |
$C_2^6:\SD_{16}$ (as 16T1256) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.66g1.2095 |
|
$x^{16} + 16 x^{13} + 16 x^{9} + 18 x^{8} + 16 x^{3} + 16 x^{2} + 6$ |
$C_2^6:\SD_{16}$ (as 16T1256) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.66g1.2096 |
|
$x^{16} + 16 x^{14} + 16 x^{13} + 16 x^{9} + 18 x^{8} + 16 x^{3} + 16 x^{2} + 6$ |
$C_2^6:\SD_{16}$ (as 16T1256) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.66g1.2097 |
|
$x^{16} + 2 x^{8} + 16 x^{6} + 16 x^{3} + 16 x^{2} + 6$ |
$C_2^6:\SD_{16}$ (as 16T1256) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |
| 2.1.16.66g1.2098 |
|
$x^{16} + 16 x^{14} + 2 x^{8} + 16 x^{6} + 16 x^{3} + 16 x^{2} + 6$ |
$C_2^6:\SD_{16}$ (as 16T1256) |
$1024$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4},\frac{31}{8}]^{2}$ |
$[\frac{17}{4},\frac{19}{4},2,3,4]_{2}$ |
$[\frac{13}{4},\frac{15}{4},1,2,3]_{2}$ |
$[51, 40, 24, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 4, 8, 32]$ |