Properties

Label 2.1.16.62h
Base 2.1.1.0a1.1
Degree \(16\)
e \(16\)
f \(1\)
c \(62\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{16} + 8 a_{47} x^{15} + 8 b_{46} x^{14} + \left(4 b_{28} + 16 c_{60}\right) x^{12} + 16 b_{59} x^{11} + 8 b_{42} x^{10} + 16 b_{57} x^{9} + 2 a_{8} x^{8} + 16 b_{55} x^{7} + 8 b_{38} x^{6} + 16 b_{53} x^{5} + 4 a_{20} x^{4} + 16 b_{51} x^{3} + 8 a_{34} x^{2} + 16 b_{49} x + 4 c_{16} + 8 c_{32} + 16 c_{48} + 2$

Invariants

Residue field characteristic: $2$
Degree: $16$
Base field: $\Q_{2}$
Ramification index $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $62$
Artin slopes: $[2,3,4,\frac{19}{4}]$
Swan slopes: $[1,2,3,\frac{15}{4}]$
Means: $\langle\frac{1}{2},\frac{5}{4},\frac{17}{8},\frac{47}{16}\rangle$
Rams: $(1,3,7,13)$
Field count: $2176$ (complete)
Ambiguity: $16$
Mass: $1024$
Absolute Mass: $1024$

Diagrams

Varying

Indices of inseparability: $[47,34,20,8,0]$
Associated inertia: $[1,1,1,1]$
Jump Set: $[1,2,4,8,32]$ (show 1088), $[1,2,4,32,48]$ (show 288), $[1,2,31,47,63]$ (show 32), $[1,7,15,31,47]$ (show 512), $[1,11,27,43,59]$ (show 144), $[1,13,29,45,61]$ (show 72), $[1,15,30,46,62]$ (show 20), $[1,15,32,48,64]$ (show 20)

Galois groups and Hidden Artin slopes

Select desired size of Galois group. Note that the following data has not all been computed for fields in this family, so the tables below are incomplete.

Fields


Showing 1-50 of at least 1000

Next   To download results, determine the number of results.
Label Packet size Polynomial Galois group Galois degree $\#\Aut(K/\Q_p)$ Artin slope content Swan slope content Hidden Artin slopes Hidden Swan slopes Ind. of Insep. Assoc. Inertia Resid. Poly Jump Set
2.1.16.62h1.1 $x^{16} + 8 x^{15} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ $C_2^6.D_4$ (as 16T848) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ $[1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ $[47, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 31, 47, 63]$
2.1.16.62h1.2 $x^{16} + 8 x^{15} + 16 x^{12} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ $C_2^6.D_4$ (as 16T848) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ $[1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ $[47, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 31, 47, 63]$
2.1.16.62h1.3 $x^{16} + 8 x^{15} + 16 x^{11} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ $C_2^6.D_4$ (as 16T848) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ $[1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ $[47, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 31, 47, 63]$
2.1.16.62h1.4 $x^{16} + 8 x^{15} + 16 x^{12} + 16 x^{11} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ $C_2^6.D_4$ (as 16T848) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ $[1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ $[47, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 31, 47, 63]$
2.1.16.62h1.5 $x^{16} + 8 x^{15} + 16 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ $C_2^6.D_4$ (as 16T848) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ $[1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ $[47, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 31, 47, 63]$
2.1.16.62h1.6 $x^{16} + 8 x^{15} + 16 x^{12} + 16 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ $C_2^6.D_4$ (as 16T848) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ $[1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ $[47, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 31, 47, 63]$
2.1.16.62h1.7 $x^{16} + 8 x^{15} + 16 x^{11} + 16 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ $C_2^6.D_4$ (as 16T848) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ $[1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ $[47, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 31, 47, 63]$
2.1.16.62h1.8 $x^{16} + 8 x^{15} + 16 x^{12} + 16 x^{11} + 16 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ $C_2^6.D_4$ (as 16T848) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ $[1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ $[47, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 31, 47, 63]$
2.1.16.62h1.9 $x^{16} + 8 x^{15} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 2$ $C_2^6.D_4$ (as 16T848) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ $[1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ $[47, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 31, 47, 63]$
2.1.16.62h1.10 $x^{16} + 8 x^{15} + 16 x^{12} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 2$ $C_2^6.D_4$ (as 16T848) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ $[1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ $[47, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 31, 47, 63]$
2.1.16.62h1.11 $x^{16} + 8 x^{15} + 16 x^{11} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 2$ $C_2^6.D_4$ (as 16T848) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ $[1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ $[47, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 31, 47, 63]$
2.1.16.62h1.12 $x^{16} + 8 x^{15} + 16 x^{12} + 16 x^{11} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 2$ $C_2^6.D_4$ (as 16T848) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ $[1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ $[47, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 31, 47, 63]$
2.1.16.62h1.13 $x^{16} + 8 x^{15} + 16 x^{9} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 2$ $C_2^6.D_4$ (as 16T848) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ $[1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ $[47, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 31, 47, 63]$
2.1.16.62h1.14 $x^{16} + 8 x^{15} + 16 x^{12} + 16 x^{9} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 2$ $C_2^6.D_4$ (as 16T848) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ $[1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ $[47, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 31, 47, 63]$
2.1.16.62h1.15 $x^{16} + 8 x^{15} + 16 x^{11} + 16 x^{9} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 2$ $C_2^6.D_4$ (as 16T848) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ $[1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ $[47, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 31, 47, 63]$
2.1.16.62h1.16 $x^{16} + 8 x^{15} + 16 x^{12} + 16 x^{11} + 16 x^{9} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 2$ $C_2^6.D_4$ (as 16T848) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ $[1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ $[47, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 31, 47, 63]$
2.1.16.62h1.17 $x^{16} + 8 x^{15} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 2$ $(D_4\times C_2^3).C_2^3$ (as 16T1024) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ $[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ $[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ $[47, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 31, 47, 63]$
2.1.16.62h1.18 $x^{16} + 8 x^{15} + 16 x^{12} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 2$ $(D_4\times C_2^3).C_2^3$ (as 16T1024) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ $[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ $[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ $[47, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 31, 47, 63]$
2.1.16.62h1.19 $x^{16} + 8 x^{15} + 16 x^{11} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 2$ $(D_4\times C_2^3).C_2^3$ (as 16T1024) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ $[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ $[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ $[47, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 31, 47, 63]$
2.1.16.62h1.20 $x^{16} + 8 x^{15} + 16 x^{12} + 16 x^{11} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 2$ $(D_4\times C_2^3).C_2^3$ (as 16T1024) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ $[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ $[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ $[47, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 31, 47, 63]$
2.1.16.62h1.21 $x^{16} + 8 x^{15} + 16 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 2$ $(D_4\times C_2^3).C_2^3$ (as 16T1024) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ $[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ $[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ $[47, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 31, 47, 63]$
2.1.16.62h1.22 $x^{16} + 8 x^{15} + 16 x^{12} + 16 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 2$ $(D_4\times C_2^3).C_2^3$ (as 16T1024) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ $[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ $[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ $[47, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 31, 47, 63]$
2.1.16.62h1.23 $x^{16} + 8 x^{15} + 16 x^{11} + 16 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 2$ $(D_4\times C_2^3).C_2^3$ (as 16T1024) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ $[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ $[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ $[47, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 31, 47, 63]$
2.1.16.62h1.24 $x^{16} + 8 x^{15} + 16 x^{12} + 16 x^{11} + 16 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 2$ $(D_4\times C_2^3).C_2^3$ (as 16T1024) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ $[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ $[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ $[47, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 31, 47, 63]$
2.1.16.62h1.25 $x^{16} + 8 x^{15} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 2$ $(D_4\times C_2^3).C_2^3$ (as 16T1024) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ $[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ $[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ $[47, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 31, 47, 63]$
2.1.16.62h1.26 $x^{16} + 8 x^{15} + 16 x^{12} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 2$ $(D_4\times C_2^3).C_2^3$ (as 16T1024) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ $[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ $[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ $[47, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 31, 47, 63]$
2.1.16.62h1.27 $x^{16} + 8 x^{15} + 16 x^{11} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 2$ $(D_4\times C_2^3).C_2^3$ (as 16T1024) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ $[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ $[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ $[47, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 31, 47, 63]$
2.1.16.62h1.28 $x^{16} + 8 x^{15} + 16 x^{12} + 16 x^{11} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 2$ $(D_4\times C_2^3).C_2^3$ (as 16T1024) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ $[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ $[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ $[47, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 31, 47, 63]$
2.1.16.62h1.29 $x^{16} + 8 x^{15} + 16 x^{9} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 2$ $(D_4\times C_2^3).C_2^3$ (as 16T1024) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ $[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ $[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ $[47, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 31, 47, 63]$
2.1.16.62h1.30 $x^{16} + 8 x^{15} + 16 x^{12} + 16 x^{9} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 2$ $(D_4\times C_2^3).C_2^3$ (as 16T1024) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ $[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ $[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ $[47, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 31, 47, 63]$
2.1.16.62h1.31 $x^{16} + 8 x^{15} + 16 x^{11} + 16 x^{9} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 2$ $(D_4\times C_2^3).C_2^3$ (as 16T1024) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ $[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ $[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ $[47, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 31, 47, 63]$
2.1.16.62h1.32 $x^{16} + 8 x^{15} + 16 x^{12} + 16 x^{11} + 16 x^{9} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 2$ $(D_4\times C_2^3).C_2^3$ (as 16T1024) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ $[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ $[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ $[47, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 2, 31, 47, 63]$
2.1.16.62h1.33 $x^{16} + 8 x^{15} + 8 x^{14} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ $C_2^4.D_4$ (as 16T266) $128$ $2$ $[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[\frac{7}{2},\frac{17}{4}]^{2}$ $[\frac{5}{2},\frac{13}{4}]^{2}$ $[47, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 15, 30, 46, 62]$
2.1.16.62h1.34 $x^{16} + 8 x^{15} + 8 x^{14} + 16 x^{11} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ $C_2^3.D_4$ (as 16T140) $64$ $4$ $[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$ $[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$ $[\frac{7}{2},\frac{17}{4}]$ $[\frac{5}{2},\frac{13}{4}]$ $[47, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 15, 30, 46, 62]$
2.1.16.62h1.35 $x^{16} + 8 x^{15} + 8 x^{14} + 16 x^{12} + 16 x^{11} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ $C_2^3.D_4$ (as 16T140) $64$ $4$ $[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$ $[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$ $[\frac{7}{2},\frac{17}{4}]$ $[\frac{5}{2},\frac{13}{4}]$ $[47, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 15, 30, 46, 62]$
2.1.16.62h1.36 $x^{16} + 8 x^{15} + 8 x^{14} + 16 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ $C_2\wr C_4$ (as 16T170) $64$ $4$ $[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$ $[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$ $[\frac{7}{2},\frac{17}{4}]$ $[\frac{5}{2},\frac{13}{4}]$ $[47, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 15, 30, 46, 62]$
2.1.16.62h1.37 $x^{16} + 8 x^{15} + 8 x^{14} + 16 x^{12} + 16 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ $C_2\wr C_4$ (as 16T170) $64$ $4$ $[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$ $[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$ $[\frac{7}{2},\frac{17}{4}]$ $[\frac{5}{2},\frac{13}{4}]$ $[47, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 15, 30, 46, 62]$
2.1.16.62h1.38 $x^{16} + 8 x^{15} + 8 x^{14} + 16 x^{11} + 16 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ $C_2^4.D_4$ (as 16T266) $128$ $2$ $[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[\frac{7}{2},\frac{17}{4}]^{2}$ $[\frac{5}{2},\frac{13}{4}]^{2}$ $[47, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 15, 30, 46, 62]$
2.1.16.62h1.39 $x^{16} + 8 x^{15} + 8 x^{14} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 2$ $C_2^3.D_4$ (as 16T140) $64$ $4$ $[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$ $[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$ $[\frac{7}{2},\frac{17}{4}]$ $[\frac{5}{2},\frac{13}{4}]$ $[47, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 15, 30, 46, 62]$
2.1.16.62h1.40 $x^{16} + 8 x^{15} + 8 x^{14} + 16 x^{12} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 2$ $C_2^3.D_4$ (as 16T140) $64$ $4$ $[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$ $[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$ $[\frac{7}{2},\frac{17}{4}]$ $[\frac{5}{2},\frac{13}{4}]$ $[47, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 15, 30, 46, 62]$
2.1.16.62h1.41 $x^{16} + 8 x^{15} + 8 x^{14} + 16 x^{11} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 2$ $C_2^4.D_4$ (as 16T266) $128$ $2$ $[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[\frac{7}{2},\frac{17}{4}]^{2}$ $[\frac{5}{2},\frac{13}{4}]^{2}$ $[47, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 15, 30, 46, 62]$
2.1.16.62h1.42 $x^{16} + 8 x^{15} + 8 x^{14} + 16 x^{9} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 2$ $C_2^4.D_4$ (as 16T266) $128$ $2$ $[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ $[\frac{7}{2},\frac{17}{4}]^{2}$ $[\frac{5}{2},\frac{13}{4}]^{2}$ $[47, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 15, 30, 46, 62]$
2.1.16.62h1.43 $x^{16} + 8 x^{15} + 8 x^{14} + 16 x^{11} + 16 x^{9} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 2$ $C_2\wr C_4$ (as 16T170) $64$ $4$ $[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$ $[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$ $[\frac{7}{2},\frac{17}{4}]$ $[\frac{5}{2},\frac{13}{4}]$ $[47, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 15, 30, 46, 62]$
2.1.16.62h1.44 $x^{16} + 8 x^{15} + 8 x^{14} + 16 x^{12} + 16 x^{11} + 16 x^{9} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 2$ $C_2\wr C_4$ (as 16T170) $64$ $4$ $[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$ $[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$ $[\frac{7}{2},\frac{17}{4}]$ $[\frac{5}{2},\frac{13}{4}]$ $[47, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 15, 30, 46, 62]$
2.1.16.62h1.45 $x^{16} + 8 x^{15} + 8 x^{14} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 2$ $C_2^6.(C_2\times C_4)$ (as 16T854) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ $[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ $[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ $[47, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 15, 30, 46, 62]$
2.1.16.62h1.46 $x^{16} + 8 x^{15} + 8 x^{14} + 16 x^{12} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 2$ $C_2^6.(C_2\times C_4)$ (as 16T854) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ $[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ $[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ $[47, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 15, 30, 46, 62]$
2.1.16.62h1.47 $x^{16} + 8 x^{15} + 8 x^{14} + 16 x^{11} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 2$ $C_2^6.(C_2\times C_4)$ (as 16T854) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ $[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ $[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ $[47, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 15, 30, 46, 62]$
2.1.16.62h1.48 $x^{16} + 8 x^{15} + 8 x^{14} + 16 x^{12} + 16 x^{11} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 2$ $C_2^6.(C_2\times C_4)$ (as 16T854) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ $[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ $[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ $[47, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 15, 30, 46, 62]$
2.1.16.62h1.49 $x^{16} + 8 x^{15} + 8 x^{14} + 16 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 2$ $C_2^6.(C_2\times C_4)$ (as 16T854) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ $[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ $[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ $[47, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 15, 30, 46, 62]$
2.1.16.62h1.50 $x^{16} + 8 x^{15} + 8 x^{14} + 16 x^{12} + 16 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 2$ $C_2^6.(C_2\times C_4)$ (as 16T854) $512$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ $[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ $[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ $[47, 34, 20, 8, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 15, 30, 46, 62]$
Next   To download results, determine the number of results.