Select desired size of Galois group. Note that the following data has not all been computed for fields in this family, so the tables below are incomplete.
Label |
Packet size |
Polynomial |
Galois group |
Galois degree |
$\#\Aut(K/\Q_p)$ |
Artin slope content |
Swan slope content |
Hidden Artin slopes |
Hidden Swan slopes |
Ind. of Insep. |
Assoc. Inertia |
Resid. Poly |
Jump Set |
2.1.16.62h1.1 |
|
$x^{16} + 8 x^{15} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^6.D_4$ (as 16T848) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[47, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 31, 47, 63]$ |
2.1.16.62h1.2 |
|
$x^{16} + 8 x^{15} + 16 x^{12} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^6.D_4$ (as 16T848) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[47, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 31, 47, 63]$ |
2.1.16.62h1.3 |
|
$x^{16} + 8 x^{15} + 16 x^{11} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^6.D_4$ (as 16T848) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[47, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 31, 47, 63]$ |
2.1.16.62h1.4 |
|
$x^{16} + 8 x^{15} + 16 x^{12} + 16 x^{11} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^6.D_4$ (as 16T848) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[47, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 31, 47, 63]$ |
2.1.16.62h1.5 |
|
$x^{16} + 8 x^{15} + 16 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^6.D_4$ (as 16T848) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[47, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 31, 47, 63]$ |
2.1.16.62h1.6 |
|
$x^{16} + 8 x^{15} + 16 x^{12} + 16 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^6.D_4$ (as 16T848) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[47, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 31, 47, 63]$ |
2.1.16.62h1.7 |
|
$x^{16} + 8 x^{15} + 16 x^{11} + 16 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^6.D_4$ (as 16T848) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[47, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 31, 47, 63]$ |
2.1.16.62h1.8 |
|
$x^{16} + 8 x^{15} + 16 x^{12} + 16 x^{11} + 16 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^6.D_4$ (as 16T848) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[47, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 31, 47, 63]$ |
2.1.16.62h1.9 |
|
$x^{16} + 8 x^{15} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^6.D_4$ (as 16T848) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[47, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 31, 47, 63]$ |
2.1.16.62h1.10 |
|
$x^{16} + 8 x^{15} + 16 x^{12} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^6.D_4$ (as 16T848) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[47, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 31, 47, 63]$ |
2.1.16.62h1.11 |
|
$x^{16} + 8 x^{15} + 16 x^{11} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^6.D_4$ (as 16T848) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[47, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 31, 47, 63]$ |
2.1.16.62h1.12 |
|
$x^{16} + 8 x^{15} + 16 x^{12} + 16 x^{11} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^6.D_4$ (as 16T848) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[47, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 31, 47, 63]$ |
2.1.16.62h1.13 |
|
$x^{16} + 8 x^{15} + 16 x^{9} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^6.D_4$ (as 16T848) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[47, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 31, 47, 63]$ |
2.1.16.62h1.14 |
|
$x^{16} + 8 x^{15} + 16 x^{12} + 16 x^{9} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^6.D_4$ (as 16T848) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[47, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 31, 47, 63]$ |
2.1.16.62h1.15 |
|
$x^{16} + 8 x^{15} + 16 x^{11} + 16 x^{9} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^6.D_4$ (as 16T848) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[47, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 31, 47, 63]$ |
2.1.16.62h1.16 |
|
$x^{16} + 8 x^{15} + 16 x^{12} + 16 x^{11} + 16 x^{9} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^6.D_4$ (as 16T848) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,\frac{7}{2},\frac{7}{2},\frac{17}{4}]^{2}$ |
$[1,\frac{5}{2},\frac{5}{2},\frac{13}{4}]^{2}$ |
$[47, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 31, 47, 63]$ |
2.1.16.62h1.17 |
|
$x^{16} + 8 x^{15} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 2$ |
$(D_4\times C_2^3).C_2^3$ (as 16T1024) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ |
$[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[47, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 31, 47, 63]$ |
2.1.16.62h1.18 |
|
$x^{16} + 8 x^{15} + 16 x^{12} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 2$ |
$(D_4\times C_2^3).C_2^3$ (as 16T1024) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ |
$[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[47, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 31, 47, 63]$ |
2.1.16.62h1.19 |
|
$x^{16} + 8 x^{15} + 16 x^{11} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 2$ |
$(D_4\times C_2^3).C_2^3$ (as 16T1024) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ |
$[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[47, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 31, 47, 63]$ |
2.1.16.62h1.20 |
|
$x^{16} + 8 x^{15} + 16 x^{12} + 16 x^{11} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 2$ |
$(D_4\times C_2^3).C_2^3$ (as 16T1024) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ |
$[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[47, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 31, 47, 63]$ |
2.1.16.62h1.21 |
|
$x^{16} + 8 x^{15} + 16 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 2$ |
$(D_4\times C_2^3).C_2^3$ (as 16T1024) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ |
$[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[47, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 31, 47, 63]$ |
2.1.16.62h1.22 |
|
$x^{16} + 8 x^{15} + 16 x^{12} + 16 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 2$ |
$(D_4\times C_2^3).C_2^3$ (as 16T1024) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ |
$[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[47, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 31, 47, 63]$ |
2.1.16.62h1.23 |
|
$x^{16} + 8 x^{15} + 16 x^{11} + 16 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 2$ |
$(D_4\times C_2^3).C_2^3$ (as 16T1024) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ |
$[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[47, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 31, 47, 63]$ |
2.1.16.62h1.24 |
|
$x^{16} + 8 x^{15} + 16 x^{12} + 16 x^{11} + 16 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 2$ |
$(D_4\times C_2^3).C_2^3$ (as 16T1024) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ |
$[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[47, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 31, 47, 63]$ |
2.1.16.62h1.25 |
|
$x^{16} + 8 x^{15} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 2$ |
$(D_4\times C_2^3).C_2^3$ (as 16T1024) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ |
$[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[47, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 31, 47, 63]$ |
2.1.16.62h1.26 |
|
$x^{16} + 8 x^{15} + 16 x^{12} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 2$ |
$(D_4\times C_2^3).C_2^3$ (as 16T1024) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ |
$[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[47, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 31, 47, 63]$ |
2.1.16.62h1.27 |
|
$x^{16} + 8 x^{15} + 16 x^{11} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 2$ |
$(D_4\times C_2^3).C_2^3$ (as 16T1024) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ |
$[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[47, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 31, 47, 63]$ |
2.1.16.62h1.28 |
|
$x^{16} + 8 x^{15} + 16 x^{12} + 16 x^{11} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 2$ |
$(D_4\times C_2^3).C_2^3$ (as 16T1024) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ |
$[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[47, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 31, 47, 63]$ |
2.1.16.62h1.29 |
|
$x^{16} + 8 x^{15} + 16 x^{9} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 2$ |
$(D_4\times C_2^3).C_2^3$ (as 16T1024) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ |
$[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[47, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 31, 47, 63]$ |
2.1.16.62h1.30 |
|
$x^{16} + 8 x^{15} + 16 x^{12} + 16 x^{9} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 2$ |
$(D_4\times C_2^3).C_2^3$ (as 16T1024) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ |
$[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[47, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 31, 47, 63]$ |
2.1.16.62h1.31 |
|
$x^{16} + 8 x^{15} + 16 x^{11} + 16 x^{9} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 2$ |
$(D_4\times C_2^3).C_2^3$ (as 16T1024) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ |
$[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[47, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 31, 47, 63]$ |
2.1.16.62h1.32 |
|
$x^{16} + 8 x^{15} + 16 x^{12} + 16 x^{11} + 16 x^{9} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 16 x + 2$ |
$(D_4\times C_2^3).C_2^3$ (as 16T1024) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ |
$[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[47, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 2, 31, 47, 63]$ |
2.1.16.62h1.33 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^4.D_4$ (as 16T266) |
$128$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[\frac{7}{2},\frac{17}{4}]^{2}$ |
$[\frac{5}{2},\frac{13}{4}]^{2}$ |
$[47, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 15, 30, 46, 62]$ |
2.1.16.62h1.34 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 16 x^{11} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^3.D_4$ (as 16T140) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$ |
$[\frac{7}{2},\frac{17}{4}]$ |
$[\frac{5}{2},\frac{13}{4}]$ |
$[47, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 15, 30, 46, 62]$ |
2.1.16.62h1.35 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 16 x^{12} + 16 x^{11} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^3.D_4$ (as 16T140) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$ |
$[\frac{7}{2},\frac{17}{4}]$ |
$[\frac{5}{2},\frac{13}{4}]$ |
$[47, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 15, 30, 46, 62]$ |
2.1.16.62h1.36 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 16 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2\wr C_4$ (as 16T170) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$ |
$[\frac{7}{2},\frac{17}{4}]$ |
$[\frac{5}{2},\frac{13}{4}]$ |
$[47, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 15, 30, 46, 62]$ |
2.1.16.62h1.37 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 16 x^{12} + 16 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2\wr C_4$ (as 16T170) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$ |
$[\frac{7}{2},\frac{17}{4}]$ |
$[\frac{5}{2},\frac{13}{4}]$ |
$[47, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 15, 30, 46, 62]$ |
2.1.16.62h1.38 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 16 x^{11} + 16 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^4.D_4$ (as 16T266) |
$128$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[\frac{7}{2},\frac{17}{4}]^{2}$ |
$[\frac{5}{2},\frac{13}{4}]^{2}$ |
$[47, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 15, 30, 46, 62]$ |
2.1.16.62h1.39 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^3.D_4$ (as 16T140) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$ |
$[\frac{7}{2},\frac{17}{4}]$ |
$[\frac{5}{2},\frac{13}{4}]$ |
$[47, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 15, 30, 46, 62]$ |
2.1.16.62h1.40 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 16 x^{12} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^3.D_4$ (as 16T140) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$ |
$[\frac{7}{2},\frac{17}{4}]$ |
$[\frac{5}{2},\frac{13}{4}]$ |
$[47, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 15, 30, 46, 62]$ |
2.1.16.62h1.41 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 16 x^{11} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^4.D_4$ (as 16T266) |
$128$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[\frac{7}{2},\frac{17}{4}]^{2}$ |
$[\frac{5}{2},\frac{13}{4}]^{2}$ |
$[47, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 15, 30, 46, 62]$ |
2.1.16.62h1.42 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 16 x^{9} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2^4.D_4$ (as 16T266) |
$128$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[\frac{7}{2},\frac{17}{4}]^{2}$ |
$[\frac{5}{2},\frac{13}{4}]^{2}$ |
$[47, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 15, 30, 46, 62]$ |
2.1.16.62h1.43 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 16 x^{11} + 16 x^{9} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2\wr C_4$ (as 16T170) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$ |
$[\frac{7}{2},\frac{17}{4}]$ |
$[\frac{5}{2},\frac{13}{4}]$ |
$[47, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 15, 30, 46, 62]$ |
2.1.16.62h1.44 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 16 x^{12} + 16 x^{11} + 16 x^{9} + 2 x^{8} + 16 x^{5} + 4 x^{4} + 8 x^{2} + 2$ |
$C_2\wr C_4$ (as 16T170) |
$64$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$ |
$[\frac{7}{2},\frac{17}{4}]$ |
$[\frac{5}{2},\frac{13}{4}]$ |
$[47, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 15, 30, 46, 62]$ |
2.1.16.62h1.45 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 2$ |
$C_2^6.(C_2\times C_4)$ (as 16T854) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ |
$[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[47, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 15, 30, 46, 62]$ |
2.1.16.62h1.46 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 16 x^{12} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 2$ |
$C_2^6.(C_2\times C_4)$ (as 16T854) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ |
$[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[47, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 15, 30, 46, 62]$ |
2.1.16.62h1.47 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 16 x^{11} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 2$ |
$C_2^6.(C_2\times C_4)$ (as 16T854) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ |
$[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[47, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 15, 30, 46, 62]$ |
2.1.16.62h1.48 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 16 x^{12} + 16 x^{11} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 2$ |
$C_2^6.(C_2\times C_4)$ (as 16T854) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ |
$[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[47, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 15, 30, 46, 62]$ |
2.1.16.62h1.49 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 16 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 2$ |
$C_2^6.(C_2\times C_4)$ (as 16T854) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ |
$[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[47, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 15, 30, 46, 62]$ |
2.1.16.62h1.50 |
|
$x^{16} + 8 x^{15} + 8 x^{14} + 16 x^{12} + 16 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 16 x + 2$ |
$C_2^6.(C_2\times C_4)$ (as 16T854) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[3,\frac{7}{2},4,\frac{17}{4}]^{2}$ |
$[2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[47, 34, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 15, 30, 46, 62]$ |