Properties

Label 2.1.16.62g
Base 2.1.1.0a1.1
Degree \(16\)
e \(16\)
f \(1\)
c \(62\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{16} + 8 a_{47} x^{15} + 8 b_{46} x^{14} + 8 b_{44} x^{12} + 8 b_{42} x^{10} + 4 b_{24} x^{8} + \left(8 b_{36} + 16 c_{52}\right) x^{4} + 16 b_{51} x^{3} + 16 b_{50} x^{2} + 16 b_{49} x + 8 c_{32} + 16 c_{48} + 2$

Invariants

Residue field characteristic: $2$
Degree: $16$
Base field: $\Q_{2}$
Ramification index $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $62$
Artin slopes: $[3,4,\frac{17}{4},\frac{17}{4}]$
Swan slopes: $[2,3,\frac{13}{4},\frac{13}{4}]$
Means: $\langle1,2,\frac{21}{8},\frac{47}{16}\rangle$
Rams: $(2,4,5,5)$
Field count: $384$ (complete)
Ambiguity: $8$
Mass: $256$
Absolute Mass: $256$

Diagrams

Varying

Indices of inseparability: $[47,42,32,16,0]$ (show 128), $[47,46,32,16,0]$ (show 128), $[47,47,32,16,0]$ (show 128)
Associated inertia: $[1,1,2]$ (show 256), $[1,1,3]$ (show 128)
Jump Set: $[1,3,7,15,31]$

Galois groups and Hidden Artin slopes

Select desired size of Galois group. Note that the following data has not all been computed for fields in this family, so the tables below are incomplete.

Fields


Showing 1-50 of 128

Next   displayed columns for results
Label Packet size Polynomial Galois group Galois degree $\#\Aut(K/\Q_p)$ Artin slope content Swan slope content Hidden Artin slopes Hidden Swan slopes Ind. of Insep. Assoc. Inertia Resid. Poly Jump Set
2.1.16.62g1.1 $x^{16} + 8 x^{15} + 2$ $C_2^4.(C_4\times D_4)$ (as 16T824) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[47, 47, 32, 16, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g1.2 $x^{16} + 8 x^{15} + 16 x^{4} + 2$ $C_2^4.(C_4\times D_4)$ (as 16T824) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[47, 47, 32, 16, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g1.3 $x^{16} + 8 x^{15} + 16 x^{2} + 2$ $C_2^4.(C_4\times D_4)$ (as 16T824) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[47, 47, 32, 16, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g1.4 $x^{16} + 8 x^{15} + 16 x^{4} + 16 x^{2} + 2$ $C_2^4.(C_4\times D_4)$ (as 16T824) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[47, 47, 32, 16, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g1.5 $x^{16} + 8 x^{15} + 18$ $C_2^4.(C_4\times D_4)$ (as 16T824) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[47, 47, 32, 16, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g1.6 $x^{16} + 8 x^{15} + 16 x^{4} + 18$ $C_2^4.(C_4\times D_4)$ (as 16T824) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[47, 47, 32, 16, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g1.7 $x^{16} + 8 x^{15} + 16 x^{2} + 18$ $C_2^4.(C_4\times D_4)$ (as 16T824) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[47, 47, 32, 16, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g1.8 $x^{16} + 8 x^{15} + 16 x^{4} + 16 x^{2} + 18$ $C_2^4.(C_4\times D_4)$ (as 16T824) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[47, 47, 32, 16, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g1.17 $x^{16} + 8 x^{15} + 8 x^{12} + 2$ $C_2^4.(C_4\times D_4)$ (as 16T824) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[47, 47, 32, 16, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g1.18 $x^{16} + 8 x^{15} + 8 x^{12} + 16 x^{4} + 2$ $C_2^4.(C_4\times D_4)$ (as 16T824) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[47, 47, 32, 16, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g1.19 $x^{16} + 8 x^{15} + 8 x^{12} + 16 x^{2} + 2$ $C_2^4.(C_4\times D_4)$ (as 16T824) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[47, 47, 32, 16, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g1.20 $x^{16} + 8 x^{15} + 8 x^{12} + 16 x^{4} + 16 x^{2} + 2$ $C_2^4.(C_4\times D_4)$ (as 16T824) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[47, 47, 32, 16, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g1.21 $x^{16} + 8 x^{15} + 8 x^{12} + 18$ $C_2^4.(C_4\times D_4)$ (as 16T824) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[47, 47, 32, 16, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g1.22 $x^{16} + 8 x^{15} + 8 x^{12} + 16 x^{4} + 18$ $C_2^4.(C_4\times D_4)$ (as 16T824) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[47, 47, 32, 16, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g1.23 $x^{16} + 8 x^{15} + 8 x^{12} + 16 x^{2} + 18$ $C_2^4.(C_4\times D_4)$ (as 16T824) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[47, 47, 32, 16, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g1.24 $x^{16} + 8 x^{15} + 8 x^{12} + 16 x^{4} + 16 x^{2} + 18$ $C_2^4.(C_4\times D_4)$ (as 16T824) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[47, 47, 32, 16, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g1.33 $x^{16} + 8 x^{15} + 8 x^{4} + 2$ $C_2^6:D_4$ (as 16T960) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[47, 47, 32, 16, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g1.34 $x^{16} + 8 x^{15} + 24 x^{4} + 2$ $C_2^6:D_4$ (as 16T960) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[47, 47, 32, 16, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g1.35 $x^{16} + 8 x^{15} + 8 x^{4} + 16 x^{2} + 2$ $C_2^6:D_4$ (as 16T960) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[47, 47, 32, 16, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g1.36 $x^{16} + 8 x^{15} + 24 x^{4} + 16 x^{2} + 2$ $C_2^6:D_4$ (as 16T960) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[47, 47, 32, 16, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g1.37 $x^{16} + 8 x^{15} + 8 x^{4} + 16 x + 2$ $C_2^6:D_4$ (as 16T960) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[47, 47, 32, 16, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g1.38 $x^{16} + 8 x^{15} + 24 x^{4} + 16 x + 2$ $C_2^6:D_4$ (as 16T960) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[47, 47, 32, 16, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g1.39 $x^{16} + 8 x^{15} + 8 x^{4} + 16 x^{2} + 16 x + 2$ $C_2^6:D_4$ (as 16T960) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[47, 47, 32, 16, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g1.40 $x^{16} + 8 x^{15} + 24 x^{4} + 16 x^{2} + 16 x + 2$ $C_2^6:D_4$ (as 16T960) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[47, 47, 32, 16, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g1.49 $x^{16} + 8 x^{15} + 8 x^{12} + 8 x^{4} + 2$ $C_2^6:D_4$ (as 16T960) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[47, 47, 32, 16, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g1.50 $x^{16} + 8 x^{15} + 8 x^{12} + 24 x^{4} + 2$ $C_2^6:D_4$ (as 16T960) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[47, 47, 32, 16, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g1.51 $x^{16} + 8 x^{15} + 8 x^{12} + 8 x^{4} + 16 x^{2} + 2$ $C_2^6:D_4$ (as 16T960) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[47, 47, 32, 16, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g1.52 $x^{16} + 8 x^{15} + 8 x^{12} + 24 x^{4} + 16 x^{2} + 2$ $C_2^6:D_4$ (as 16T960) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[47, 47, 32, 16, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g1.53 $x^{16} + 8 x^{15} + 8 x^{12} + 8 x^{4} + 16 x + 2$ $C_2^6:D_4$ (as 16T960) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[47, 47, 32, 16, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g1.54 $x^{16} + 8 x^{15} + 8 x^{12} + 24 x^{4} + 16 x + 2$ $C_2^6:D_4$ (as 16T960) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[47, 47, 32, 16, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g1.55 $x^{16} + 8 x^{15} + 8 x^{12} + 8 x^{4} + 16 x^{2} + 16 x + 2$ $C_2^6:D_4$ (as 16T960) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[47, 47, 32, 16, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g1.56 $x^{16} + 8 x^{15} + 8 x^{12} + 24 x^{4} + 16 x^{2} + 16 x + 2$ $C_2^6:D_4$ (as 16T960) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[47, 47, 32, 16, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g1.65 $x^{16} + 8 x^{15} + 10$ $C_2^4.(C_4\times D_4)$ (as 16T824) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[47, 47, 32, 16, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g1.66 $x^{16} + 8 x^{15} + 16 x^{4} + 10$ $C_2^4.(C_4\times D_4)$ (as 16T824) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[47, 47, 32, 16, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g1.67 $x^{16} + 8 x^{15} + 16 x^{2} + 10$ $C_2^4.(C_4\times D_4)$ (as 16T824) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[47, 47, 32, 16, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g1.68 $x^{16} + 8 x^{15} + 16 x^{4} + 16 x^{2} + 10$ $C_2^4.(C_4\times D_4)$ (as 16T824) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[47, 47, 32, 16, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g1.69 $x^{16} + 8 x^{15} + 26$ $C_2^4.(C_4\times D_4)$ (as 16T824) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[47, 47, 32, 16, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g1.70 $x^{16} + 8 x^{15} + 16 x^{4} + 26$ $C_2^4.(C_4\times D_4)$ (as 16T824) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[47, 47, 32, 16, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g1.71 $x^{16} + 8 x^{15} + 16 x^{2} + 26$ $C_2^4.(C_4\times D_4)$ (as 16T824) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[47, 47, 32, 16, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g1.72 $x^{16} + 8 x^{15} + 16 x^{4} + 16 x^{2} + 26$ $C_2^4.(C_4\times D_4)$ (as 16T824) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[47, 47, 32, 16, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g1.81 $x^{16} + 8 x^{15} + 8 x^{12} + 10$ $C_2^4.(C_4\times D_4)$ (as 16T824) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[47, 47, 32, 16, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g1.82 $x^{16} + 8 x^{15} + 8 x^{12} + 16 x^{4} + 10$ $C_2^4.(C_4\times D_4)$ (as 16T824) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[47, 47, 32, 16, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g1.83 $x^{16} + 8 x^{15} + 8 x^{12} + 16 x^{2} + 10$ $C_2^4.(C_4\times D_4)$ (as 16T824) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[47, 47, 32, 16, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g1.84 $x^{16} + 8 x^{15} + 8 x^{12} + 16 x^{4} + 16 x^{2} + 10$ $C_2^4.(C_4\times D_4)$ (as 16T824) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[47, 47, 32, 16, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g1.85 $x^{16} + 8 x^{15} + 8 x^{12} + 26$ $C_2^4.(C_4\times D_4)$ (as 16T824) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[47, 47, 32, 16, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g1.86 $x^{16} + 8 x^{15} + 8 x^{12} + 16 x^{4} + 26$ $C_2^4.(C_4\times D_4)$ (as 16T824) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[47, 47, 32, 16, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g1.87 $x^{16} + 8 x^{15} + 8 x^{12} + 16 x^{2} + 26$ $C_2^4.(C_4\times D_4)$ (as 16T824) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[47, 47, 32, 16, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g1.88 $x^{16} + 8 x^{15} + 8 x^{12} + 16 x^{4} + 16 x^{2} + 26$ $C_2^4.(C_4\times D_4)$ (as 16T824) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[47, 47, 32, 16, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g1.97 $x^{16} + 8 x^{15} + 8 x^{4} + 10$ $C_2^6:D_4$ (as 16T960) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[47, 47, 32, 16, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 3, 7, 15, 31]$
2.1.16.62g1.98 $x^{16} + 8 x^{15} + 24 x^{4} + 10$ $C_2^6:D_4$ (as 16T960) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4}]^{2}$ $[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ $[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ $[47, 47, 32, 16, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 3, 7, 15, 31]$
Next   displayed columns for results