Properties

Label 2.1.16.56l
Base 2.1.1.0a1.1
Degree \(16\)
e \(16\)
f \(1\)
c \(56\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{16} + 8 b_{47} x^{15} + 8 b_{46} x^{14} + 8 b_{45} x^{13} + 4 b_{28} x^{12} + 8 b_{43} x^{11} + 8 b_{42} x^{10} + 8 a_{41} x^{9} + 2 a_{8} x^{8} + 8 b_{38} x^{6} + 4 a_{20} x^{4} + 8 b_{34} x^{2} + 4 c_{16} + 8 c_{32} + 16 c_{48} + 2$

Invariants

Residue field characteristic: $2$
Degree: $16$
Base field: $\Q_{2}$
Ramification index $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $56$
Artin slopes: $[2,3,4,4]$
Swan slopes: $[1,2,3,3]$
Means: $\langle\frac{1}{2},\frac{5}{4},\frac{17}{8},\frac{41}{16}\rangle$
Rams: $(1,3,7,7)$
Field count: $384$ (complete)
Ambiguity: $8$
Mass: $256$
Absolute Mass: $256$

Diagrams

Varying

Indices of inseparability: $[41,34,20,8,0]$ (show 128), $[41,36,20,8,0]$ (show 256)
Associated inertia: $[1,1,2]$ (show 256), $[1,1,3]$ (show 128)
Jump Set: $[1,2,4,8,32]$ (show 192), $[1,2,4,32,48]$ (show 48), $[1,2,25,41,57]$ (show 8), $[1,7,15,31,47]$ (show 96), $[1,9,18,34,50]$ (show 2), $[1,9,27,43,59]$ (show 16), $[1,9,29,45,61]$ (show 8), $[1,9,31,47,63]$ (show 4), $[1,9,32,48,64]$ (show 2), $[1,11,25,41,57]$ (show 8)

Galois groups and Hidden Artin slopes

Select desired size of Galois group. Note that the following data has not all been computed for fields in this family, so the tables below are incomplete.

Fields


Showing all 2

  displayed columns for results
Label Packet size Polynomial Galois group Galois degree $\#\Aut(K/\Q_p)$ Artin slope content Swan slope content Hidden Artin slopes Hidden Swan slopes Ind. of Insep. Assoc. Inertia Resid. Poly Jump Set
2.1.16.56l1.2 $x^{16} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 18$ $C_2^4.C_2^3$ (as 16T231) $128$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ $[1,2,2,\frac{5}{2},3,3]^{2}$ $[3,\frac{7}{2}]^{2}$ $[2,\frac{5}{2}]^{2}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 9, 32, 48, 64]$
2.1.16.56l1.6 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 18$ $C_2^4.C_2^3$ (as 16T231) $128$ $2$ $[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ $[1,2,2,\frac{5}{2},3,3]^{2}$ $[3,\frac{7}{2}]^{2}$ $[2,\frac{5}{2}]^{2}$ $[41, 36, 20, 8, 0]$ $[1, 1, 2]$ $z^8 + 1,z^4 + 1,z^3 + 1$ $[1, 9, 32, 48, 64]$
  displayed columns for results