Defining polynomial
| $x^{16} + 8 b_{47} x^{15} + 8 b_{46} x^{14} + 8 b_{45} x^{13} + 4 b_{28} x^{12} + 8 b_{43} x^{11} + 8 b_{42} x^{10} + 8 a_{41} x^{9} + 2 a_{8} x^{8} + 8 b_{38} x^{6} + 4 a_{20} x^{4} + 8 b_{34} x^{2} + 4 c_{16} + 8 c_{32} + 16 c_{48} + 2$ |
Invariants
| Residue field characteristic: | $2$ |
| Degree: | $16$ |
| Base field: | $\Q_{2}$ |
| Ramification index $e$: | $16$ |
| Residue field degree $f$: | $1$ |
| Discriminant exponent $c$: | $56$ |
| Artin slopes: | $[2,3,4,4]$ |
| Swan slopes: | $[1,2,3,3]$ |
| Means: | $\langle\frac{1}{2},\frac{5}{4},\frac{17}{8},\frac{41}{16}\rangle$ |
| Rams: | $(1,3,7,7)$ |
| Field count: | $384$ (complete) |
| Ambiguity: | $8$ |
| Mass: | $256$ |
| Absolute Mass: | $256$ |
Diagrams
Varying
| Indices of inseparability: | $[41,34,20,8,0]$ (show 128), $[41,36,20,8,0]$ (show 256) |
| Associated inertia: | $[1,1,2]$ (show 256), $[1,1,3]$ (show 128) |
| Jump Set: | $[1,2,4,8,32]$ (show 192), $[1,2,4,32,48]$ (show 48), $[1,2,25,41,57]$ (show 8), $[1,7,15,31,47]$ (show 96), $[1,9,18,34,50]$ (show 2), $[1,9,27,43,59]$ (show 16), $[1,9,29,45,61]$ (show 8), $[1,9,31,47,63]$ (show 4), $[1,9,32,48,64]$ (show 2), $[1,11,25,41,57]$ (show 8) |
Galois groups and Hidden Artin slopes
Select desired size of Galois group. Note that the following data has not all been computed for fields in this family, so the tables below are incomplete.
Fields
Showing all 2
Download displayed columns for results| Label | Polynomial | Galois group | Galois degree | $\#\Aut(K/\Q_p)$ | Hidden Artin slopes | Ind. of Insep. | Assoc. Inertia | Jump Set |
|---|---|---|---|---|---|---|---|---|
| 2.1.16.56l1.2 | $x^{16} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 18$ | $C_2^4.C_2^3$ (as 16T231) | $128$ | $2$ | $[3,\frac{7}{2}]^{2}$ | $[41, 36, 20, 8, 0]$ | $[1, 1, 2]$ | $[1, 9, 32, 48, 64]$ |
| 2.1.16.56l1.6 | $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 18$ | $C_2^4.C_2^3$ (as 16T231) | $128$ | $2$ | $[3,\frac{7}{2}]^{2}$ | $[41, 36, 20, 8, 0]$ | $[1, 1, 2]$ | $[1, 9, 32, 48, 64]$ |