| Indices of inseparability: | $[41,34,20,8,0]$ (show 128), $[41,36,20,8,0]$ (show 256) |
| Associated inertia: | $[1,1,2]$ (show 256), $[1,1,3]$ (show 128) |
| Jump Set: | $[1,2,4,8,32]$ (show 192), $[1,2,4,32,48]$ (show 48), $[1,2,25,41,57]$ (show 8), $[1,7,15,31,47]$ (show 96), $[1,9,18,34,50]$ (show 2), $[1,9,27,43,59]$ (show 16), $[1,9,29,45,61]$ (show 8), $[1,9,31,47,63]$ (show 4), $[1,9,32,48,64]$ (show 2), $[1,11,25,41,57]$ (show 8) |
Select desired size of Galois group. Note that the following data has not all been computed for fields in this family, so the tables below are incomplete.
| Label |
Packet size |
Polynomial |
Galois group |
Galois degree |
$\#\Aut(K/\Q_p)$ |
Artin slope content |
Swan slope content |
Hidden Artin slopes |
Hidden Swan slopes |
Ind. of Insep. |
Assoc. Inertia |
Resid. Poly |
Jump Set |
| 2.1.16.56l1.7 |
16 |
$x^{16} + 8 x^{13} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^4.C_2^3$ (as 16T229) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 9, 29, 45, 61]$ |
| 2.1.16.56l1.8 |
16 |
$x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^4:Q_8$ (as 16T368) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 9, 29, 45, 61]$ |
| 2.1.16.56l1.9 |
16 |
$x^{16} + 8 x^{14} + 8 x^{13} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^4:Q_8$ (as 16T368) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 9, 29, 45, 61]$ |
| 2.1.16.56l1.10 |
16 |
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^4.C_2^3$ (as 16T229) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 9, 29, 45, 61]$ |
| 2.1.16.56l1.21 |
16 |
$x^{16} + 8 x^{10} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^4.C_2^3$ (as 16T229) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 9, 29, 45, 61]$ |
| 2.1.16.56l1.22 |
16 |
$x^{16} + 8 x^{15} + 8 x^{10} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^4:Q_8$ (as 16T368) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 9, 29, 45, 61]$ |
| 2.1.16.56l1.23 |
16 |
$x^{16} + 8 x^{14} + 8 x^{10} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^4:Q_8$ (as 16T368) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 9, 29, 45, 61]$ |
| 2.1.16.56l1.24 |
16 |
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{10} + 8 x^{9} + 2 x^{8} + 4 x^{4} + 2$ |
$C_2^4.C_2^3$ (as 16T229) |
$128$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4]^{2}$ |
$[1,2,2,\frac{5}{2},3,3]^{2}$ |
$[3,\frac{7}{2}]^{2}$ |
$[2,\frac{5}{2}]^{2}$ |
$[41, 36, 20, 8, 0]$ |
$[1, 1, 2]$ |
$z^8 + 1,z^4 + 1,z^3 + 1$ |
$[1, 9, 29, 45, 61]$ |