Select desired size of Galois group.
Label |
Packet size |
Polynomial |
Galois group |
Galois degree |
$\#\Aut(K/\Q_p)$ |
Artin slope content |
Swan slope content |
Hidden Artin slopes |
Hidden Swan slopes |
Ind. of Insep. |
Assoc. Inertia |
Resid. Poly |
Jump Set |
2.1.16.54o1.97 |
16 |
$x^{16} + 4 x^{14} + 4 x^{12} + 2 x^{8} + 8 x^{7} + 4 x^{4} + 2$ |
$C_2^4.(C_4\times D_4)$ (as 16T896) |
$512$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ |
$[1,1,1,2,\frac{5}{2},\frac{5}{2},3]^{4}$ |
$[2,2,\frac{7}{2}]^{4}$ |
$[1,1,\frac{5}{2}]^{4}$ |
$[39, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 25, 41, 57]$ |
2.1.16.54o1.98 |
16 |
$x^{16} + 4 x^{14} + 8 x^{13} + 4 x^{12} + 2 x^{8} + 8 x^{7} + 4 x^{4} + 2$ |
$C_2^4.(C_4\times D_4)$ (as 16T896) |
$512$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ |
$[1,1,1,2,\frac{5}{2},\frac{5}{2},3]^{4}$ |
$[2,2,\frac{7}{2}]^{4}$ |
$[1,1,\frac{5}{2}]^{4}$ |
$[39, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 25, 41, 57]$ |
2.1.16.54o1.99 |
16 |
$x^{16} + 4 x^{14} + 4 x^{12} + 8 x^{11} + 2 x^{8} + 8 x^{7} + 4 x^{4} + 2$ |
$C_2^4.(C_4\times D_4)$ (as 16T896) |
$512$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ |
$[1,1,1,2,\frac{5}{2},\frac{5}{2},3]^{4}$ |
$[2,2,\frac{7}{2}]^{4}$ |
$[1,1,\frac{5}{2}]^{4}$ |
$[39, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 25, 41, 57]$ |
2.1.16.54o1.100 |
16 |
$x^{16} + 8 x^{15} + 4 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 2 x^{8} + 8 x^{7} + 4 x^{4} + 2$ |
$C_2^4.(C_4\times D_4)$ (as 16T896) |
$512$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ |
$[1,1,1,2,\frac{5}{2},\frac{5}{2},3]^{4}$ |
$[2,2,\frac{7}{2}]^{4}$ |
$[1,1,\frac{5}{2}]^{4}$ |
$[39, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 25, 41, 57]$ |
2.1.16.54o1.109 |
16 |
$x^{16} + 4 x^{14} + 4 x^{12} + 2 x^{8} + 8 x^{7} + 8 x^{6} + 4 x^{4} + 2$ |
$C_2^4.(C_4\times D_4)$ (as 16T926) |
$512$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ |
$[1,1,1,2,\frac{5}{2},\frac{5}{2},3]^{4}$ |
$[2,2,\frac{7}{2}]^{4}$ |
$[1,1,\frac{5}{2}]^{4}$ |
$[39, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 25, 41, 57]$ |
2.1.16.54o1.110 |
16 |
$x^{16} + 8 x^{15} + 4 x^{14} + 4 x^{12} + 2 x^{8} + 8 x^{7} + 8 x^{6} + 4 x^{4} + 2$ |
$C_2^4.(C_4\times D_4)$ (as 16T926) |
$512$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ |
$[1,1,1,2,\frac{5}{2},\frac{5}{2},3]^{4}$ |
$[2,2,\frac{7}{2}]^{4}$ |
$[1,1,\frac{5}{2}]^{4}$ |
$[39, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 25, 41, 57]$ |
2.1.16.54o1.111 |
16 |
$x^{16} + 4 x^{14} + 8 x^{13} + 4 x^{12} + 2 x^{8} + 8 x^{7} + 8 x^{6} + 4 x^{4} + 2$ |
$C_2^4.(C_4\times D_4)$ (as 16T926) |
$512$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ |
$[1,1,1,2,\frac{5}{2},\frac{5}{2},3]^{4}$ |
$[2,2,\frac{7}{2}]^{4}$ |
$[1,1,\frac{5}{2}]^{4}$ |
$[39, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 25, 41, 57]$ |
2.1.16.54o1.112 |
16 |
$x^{16} + 8 x^{15} + 4 x^{14} + 8 x^{13} + 4 x^{12} + 2 x^{8} + 8 x^{7} + 8 x^{6} + 4 x^{4} + 2$ |
$C_2^4.(C_4\times D_4)$ (as 16T926) |
$512$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ |
$[1,1,1,2,\frac{5}{2},\frac{5}{2},3]^{4}$ |
$[2,2,\frac{7}{2}]^{4}$ |
$[1,1,\frac{5}{2}]^{4}$ |
$[39, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 25, 41, 57]$ |
2.1.16.54o1.130 |
16 |
$x^{16} + 4 x^{14} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 8 x^{7} + 4 x^{4} + 8 x^{2} + 2$ |
$C_4^2.D_4$ (as 16T344) |
$128$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{2}$ |
$[2,\frac{7}{2}]^{2}$ |
$[1,\frac{5}{2}]^{2}$ |
$[39, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 25, 41, 57]$ |
2.1.16.54o1.131 |
16 |
$x^{16} + 8 x^{15} + 4 x^{14} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 8 x^{7} + 4 x^{4} + 8 x^{2} + 2$ |
$C_4^2.D_4$ (as 16T344) |
$128$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{2}$ |
$[2,\frac{7}{2}]^{2}$ |
$[1,\frac{5}{2}]^{2}$ |
$[39, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 25, 41, 57]$ |
2.1.16.54o1.132 |
8 |
$x^{16} + 4 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 8 x^{7} + 4 x^{4} + 8 x^{2} + 2$ |
$C_4^2:D_4$ (as 16T340) |
$128$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{2}$ |
$[2,\frac{7}{2}]^{2}$ |
$[1,\frac{5}{2}]^{2}$ |
$[39, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 25, 41, 57]$ |
2.1.16.54o1.133 |
16 |
$x^{16} + 4 x^{14} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 8 x^{7} + 4 x^{4} + 8 x^{2} + 2$ |
$C_4^2.D_4$ (as 16T344) |
$128$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{2}$ |
$[2,\frac{7}{2}]^{2}$ |
$[1,\frac{5}{2}]^{2}$ |
$[39, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 25, 41, 57]$ |
2.1.16.54o1.134 |
8 |
$x^{16} + 4 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 8 x^{7} + 4 x^{4} + 8 x^{2} + 2$ |
$C_4^2:D_4$ (as 16T340) |
$128$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{2}$ |
$[2,\frac{7}{2}]^{2}$ |
$[1,\frac{5}{2}]^{2}$ |
$[39, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 25, 41, 57]$ |
2.1.16.54o1.136 |
16 |
$x^{16} + 4 x^{14} + 4 x^{12} + 8 x^{9} + 10 x^{8} + 8 x^{7} + 4 x^{4} + 8 x^{2} + 2$ |
$C_4^2.D_4$ (as 16T344) |
$128$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{2}$ |
$[2,\frac{7}{2}]^{2}$ |
$[1,\frac{5}{2}]^{2}$ |
$[39, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 25, 41, 57]$ |
2.1.16.54o1.144 |
8 |
$x^{16} + 4 x^{14} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 8 x^{7} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 2$ |
$C_4^2:D_4$ (as 16T402) |
$128$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{2}$ |
$[2,\frac{7}{2}]^{2}$ |
$[1,\frac{5}{2}]^{2}$ |
$[39, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 25, 41, 57]$ |
2.1.16.54o1.145 |
16 |
$x^{16} + 4 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{9} + 2 x^{8} + 8 x^{7} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 2$ |
$C_4^2:D_4$ (as 16T400) |
$128$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{2}$ |
$[2,\frac{7}{2}]^{2}$ |
$[1,\frac{5}{2}]^{2}$ |
$[39, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 25, 41, 57]$ |
2.1.16.54o1.146 |
16 |
$x^{16} + 8 x^{15} + 4 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 2 x^{8} + 8 x^{7} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 2$ |
$C_4^2:D_4$ (as 16T400) |
$128$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{2}$ |
$[2,\frac{7}{2}]^{2}$ |
$[1,\frac{5}{2}]^{2}$ |
$[39, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 25, 41, 57]$ |
2.1.16.54o1.154 |
8 |
$x^{16} + 4 x^{14} + 4 x^{12} + 8 x^{9} + 10 x^{8} + 8 x^{7} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 2$ |
$C_4^2:D_4$ (as 16T402) |
$128$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{2}$ |
$[2,\frac{7}{2}]^{2}$ |
$[1,\frac{5}{2}]^{2}$ |
$[39, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 25, 41, 57]$ |
2.1.16.54o1.155 |
16 |
$x^{16} + 4 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{9} + 10 x^{8} + 8 x^{7} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 2$ |
$C_4^2:D_4$ (as 16T400) |
$128$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{2}$ |
$[2,\frac{7}{2}]^{2}$ |
$[1,\frac{5}{2}]^{2}$ |
$[39, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 25, 41, 57]$ |
2.1.16.54o1.156 |
16 |
$x^{16} + 4 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{11} + 8 x^{9} + 10 x^{8} + 8 x^{7} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 2$ |
$C_4^2:D_4$ (as 16T400) |
$128$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{2}$ |
$[2,\frac{7}{2}]^{2}$ |
$[1,\frac{5}{2}]^{2}$ |
$[39, 30, 20, 8, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 7, 25, 41, 57]$ |