Select desired size of Galois group. Note that the following data has not all been computed for fields in this family, so the tables below are incomplete.
| Label |
Packet size |
Polynomial |
Galois group |
Galois degree |
$\#\Aut(K/\Q_p)$ |
Artin slope content |
Swan slope content |
Hidden Artin slopes |
Hidden Swan slopes |
Ind. of Insep. |
Assoc. Inertia |
Resid. Poly |
Jump Set |
| 2.1.16.42k1.41 |
16 |
$x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{2} + 6$ |
$C_2^6.\SD_{16}$ (as 16T1264) |
$1024$ |
$2$ |
$[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[2,2,3,3]_{4}$ |
$[1,1,2,2]_{4}$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.42 |
16 |
$x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{2} + 8 x + 6$ |
$C_2^6.\SD_{16}$ (as 16T1264) |
$1024$ |
$2$ |
$[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[2,2,3,3]_{4}$ |
$[1,1,2,2]_{4}$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.43 |
16 |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{2} + 6$ |
$C_8^2:C_2^2$ (as 16T568) |
$256$ |
$4$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.44 |
16 |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 8 x^{4} + 4 x^{2} + 6$ |
$C_8^2:C_2^2$ (as 16T568) |
$256$ |
$4$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.45 |
16 |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 8 x^{3} + 4 x^{2} + 6$ |
$C_8^2:C_2^2$ (as 16T568) |
$256$ |
$4$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.46 |
16 |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 8 x^{4} + 8 x^{3} + 4 x^{2} + 6$ |
$C_8^2:C_2^2$ (as 16T568) |
$256$ |
$4$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.47 |
16 |
$x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{2} + 6$ |
$C_2^6.\SD_{16}$ (as 16T1264) |
$1024$ |
$2$ |
$[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[2,2,3,3]_{4}$ |
$[1,1,2,2]_{4}$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.48 |
16 |
$x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{2} + 8 x + 6$ |
$C_2^6.\SD_{16}$ (as 16T1264) |
$1024$ |
$2$ |
$[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[2,2,3,3]_{4}$ |
$[1,1,2,2]_{4}$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.49 |
8 |
$x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{2} + 6$ |
$C_4^2.Q_{16}$ (as 16T697) |
$256$ |
$2$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.50 |
8 |
$x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 8 x^{3} + 4 x^{2} + 6$ |
$C_4^2.Q_{16}$ (as 16T697) |
$256$ |
$2$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.51 |
16 |
$x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{2} + 6$ |
$C_2^6.\SD_{16}$ (as 16T1264) |
$1024$ |
$2$ |
$[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[2,2,3,3]_{4}$ |
$[1,1,2,2]_{4}$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.52 |
16 |
$x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{2} + 8 x + 6$ |
$C_2^6.\SD_{16}$ (as 16T1264) |
$1024$ |
$2$ |
$[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[2,2,3,3]_{4}$ |
$[1,1,2,2]_{4}$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.53 |
16 |
$x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 8 x^{4} + 4 x^{2} + 8 x + 6$ |
$C_2^6.\SD_{16}$ (as 16T1264) |
$1024$ |
$2$ |
$[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[2,2,3,3]_{4}$ |
$[1,1,2,2]_{4}$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.54 |
16 |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{2} + 6$ |
$C_8^2:C_2^2$ (as 16T568) |
$256$ |
$4$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.55 |
16 |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 8 x^{4} + 4 x^{2} + 6$ |
$C_8^2:C_2^2$ (as 16T568) |
$256$ |
$4$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.56 |
16 |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 8 x^{3} + 4 x^{2} + 6$ |
$C_8^2:C_2^2$ (as 16T568) |
$256$ |
$4$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.57 |
16 |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 8 x^{4} + 8 x^{3} + 4 x^{2} + 6$ |
$C_8^2:C_2^2$ (as 16T568) |
$256$ |
$4$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.58 |
16 |
$x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{2} + 6$ |
$C_2^6.\SD_{16}$ (as 16T1264) |
$1024$ |
$2$ |
$[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[2,2,3,3]_{4}$ |
$[1,1,2,2]_{4}$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.59 |
8 |
$x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{2} + 6$ |
$C_4^2.Q_{16}$ (as 16T697) |
$256$ |
$2$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.60 |
8 |
$x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 8 x^{3} + 4 x^{2} + 6$ |
$C_4^2.Q_{16}$ (as 16T697) |
$256$ |
$2$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.61 |
8 |
$x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 4 x^{2} + 6$ |
$C_2^3.\SD_{16}$ (as 16T374) |
$128$ |
$2$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{2}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{2}$ |
$[3,3]^{2}$ |
$[2,2]^{2}$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.62 |
8 |
$x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 8 x^{3} + 4 x^{2} + 6$ |
$C_2^3.\SD_{16}$ (as 16T374) |
$128$ |
$2$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{2}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{2}$ |
$[3,3]^{2}$ |
$[2,2]^{2}$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.63 |
16 |
$x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 4 x^{2} + 8 x + 6$ |
$C_2^4.\SD_{16}$ (as 16T673) |
$256$ |
$4$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.64 |
16 |
$x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 8 x + 6$ |
$C_2^4.\SD_{16}$ (as 16T673) |
$256$ |
$4$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.65 |
16 |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 4 x^{2} + 6$ |
$C_2^6.\SD_{16}$ (as 16T1250) |
$1024$ |
$2$ |
$[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[2,2,3,3]_{4}$ |
$[1,1,2,2]_{4}$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.66 |
16 |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 6$ |
$C_2^6.\SD_{16}$ (as 16T1250) |
$1024$ |
$2$ |
$[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[2,2,3,3]_{4}$ |
$[1,1,2,2]_{4}$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.67 |
16 |
$x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 4 x^{2} + 6$ |
$C_2^6.\SD_{16}$ (as 16T1250) |
$1024$ |
$2$ |
$[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[2,2,3,3]_{4}$ |
$[1,1,2,2]_{4}$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.68 |
16 |
$x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 6$ |
$C_2^6.\SD_{16}$ (as 16T1250) |
$1024$ |
$2$ |
$[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[2,2,3,3]_{4}$ |
$[1,1,2,2]_{4}$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.69 |
8 |
$x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 4 x^{2} + 6$ |
$C_2^3.\SD_{16}$ (as 16T374) |
$128$ |
$2$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{2}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{2}$ |
$[3,3]^{2}$ |
$[2,2]^{2}$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.70 |
16 |
$x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 4 x^{2} + 8 x + 6$ |
$C_2^4.\SD_{16}$ (as 16T673) |
$256$ |
$4$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.71 |
16 |
$x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 8 x + 6$ |
$C_2^4.\SD_{16}$ (as 16T673) |
$256$ |
$4$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.72 |
16 |
$x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{6} + 8 x^{3} + 4 x^{2} + 8 x + 6$ |
$C_2^4.\SD_{16}$ (as 16T673) |
$256$ |
$4$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.73 |
8 |
$x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 4 x^{2} + 6$ |
$C_2^3.\SD_{16}$ (as 16T374) |
$128$ |
$2$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{2}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{2}$ |
$[3,3]^{2}$ |
$[2,2]^{2}$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.74 |
16 |
$x^{16} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 8 x^{3} + 4 x^{2} + 8 x + 6$ |
$C_2^4.\SD_{16}$ (as 16T673) |
$256$ |
$4$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.75 |
16 |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 4 x^{2} + 6$ |
$C_2^6.\SD_{16}$ (as 16T1250) |
$1024$ |
$2$ |
$[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[2,2,3,3]_{4}$ |
$[1,1,2,2]_{4}$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.76 |
16 |
$x^{16} + 4 x^{15} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 6$ |
$C_2^6.\SD_{16}$ (as 16T1250) |
$1024$ |
$2$ |
$[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[2,2,3,3]_{4}$ |
$[1,1,2,2]_{4}$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.77 |
16 |
$x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 4 x^{2} + 6$ |
$C_2^6.\SD_{16}$ (as 16T1250) |
$1024$ |
$2$ |
$[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[2,2,3,3]_{4}$ |
$[1,1,2,2]_{4}$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.78 |
16 |
$x^{16} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 6$ |
$C_2^6.\SD_{16}$ (as 16T1250) |
$1024$ |
$2$ |
$[2, 2, 2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[2,2,3,3]_{4}$ |
$[1,1,2,2]_{4}$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.79 |
16 |
$x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 4 x^{2} + 8 x + 6$ |
$C_2^4.\SD_{16}$ (as 16T673) |
$256$ |
$4$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |
| 2.1.16.42k1.80 |
16 |
$x^{16} + 4 x^{15} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 4 x^{8} + 4 x^{6} + 8 x^{4} + 4 x^{2} + 8 x + 6$ |
$C_2^4.\SD_{16}$ (as 16T673) |
$256$ |
$4$ |
$[2, 2, \frac{5}{2}, 3, 3, \frac{13}{4}]^{4}$ |
$[1,1,\frac{3}{2},2,2,\frac{9}{4}]^{4}$ |
$[3,3]^{4}$ |
$[2,2]^{4}$ |
$[27, 18, 12, 12, 0]$ |
$[2, 1, 1]$ |
$z^{12} + 1,z^2 + 1,z + 1$ |
$[1, 3, 6, 12, 32]$ |