Select desired size of Galois group. Note that the following data has not all been computed for fields in this family, so the tables below are incomplete.
Label |
Packet size |
Polynomial |
Galois group |
Galois degree |
$\#\Aut(K/\Q_p)$ |
Artin slope content |
Swan slope content |
Hidden Artin slopes |
Hidden Swan slopes |
Ind. of Insep. |
Assoc. Inertia |
Resid. Poly |
Jump Set |
2.1.16.42b4.1 |
4 |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 2$ |
$C_2^4.D_4$ (as 16T319) |
$128$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,\frac{5}{2}]^{4}$ |
$[3]^{4}$ |
$[2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.2 |
8 |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 2$ |
$C_2^4.D_4$ (as 16T230) |
$128$ |
$4$ |
$[2, 2, 2, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,\frac{5}{2}]^{4}$ |
$[3]^{4}$ |
$[2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.3 |
8 |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 2$ |
$C_2^4.D_4$ (as 16T230) |
$128$ |
$4$ |
$[2, 2, 2, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,\frac{5}{2}]^{4}$ |
$[3]^{4}$ |
$[2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.4 |
8 |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{5} + 2$ |
$C_4^2.D_4$ (as 16T397) |
$128$ |
$4$ |
$[2, 2, 2, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,\frac{5}{2}]^{4}$ |
$[3]^{4}$ |
$[2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.5 |
8 |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{5} + 2$ |
$C_4^2.D_4$ (as 16T397) |
$128$ |
$4$ |
$[2, 2, 2, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,\frac{5}{2}]^{4}$ |
$[3]^{4}$ |
$[2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.6 |
4 |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x^{5} + 2$ |
$C_4^2.D_4$ (as 16T361) |
$128$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,\frac{5}{2}]^{4}$ |
$[3]^{4}$ |
$[2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.7 |
4 |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{3} + 2$ |
$C_2^4.D_4$ (as 16T297) |
$128$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,\frac{5}{2}]^{4}$ |
$[3]^{4}$ |
$[2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.8 |
8 |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x^{3} + 2$ |
$C_2^4.D_4$ (as 16T254) |
$128$ |
$4$ |
$[2, 2, 2, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,\frac{5}{2}]^{4}$ |
$[3]^{4}$ |
$[2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.9 |
8 |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 8 x^{3} + 2$ |
$C_2^4.D_4$ (as 16T254) |
$128$ |
$4$ |
$[2, 2, 2, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,\frac{5}{2}]^{4}$ |
$[3]^{4}$ |
$[2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.10 |
8 |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{5} + 8 x^{3} + 2$ |
$C_4^2.D_4$ (as 16T398) |
$128$ |
$4$ |
$[2, 2, 2, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,\frac{5}{2}]^{4}$ |
$[3]^{4}$ |
$[2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.11 |
8 |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{5} + 8 x^{3} + 2$ |
$C_4^2.D_4$ (as 16T398) |
$128$ |
$4$ |
$[2, 2, 2, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,\frac{5}{2}]^{4}$ |
$[3]^{4}$ |
$[2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.12 |
4 |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x^{5} + 8 x^{3} + 2$ |
$C_4^2.D_4$ (as 16T387) |
$128$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,\frac{5}{2}]^{4}$ |
$[3]^{4}$ |
$[2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.13 |
16 |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x + 2$ |
$C_2^6.\SD_{16}$ (as 16T1284) |
$1024$ |
$2$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.14 |
16 |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x + 2$ |
$C_2^6.\SD_{16}$ (as 16T1284) |
$1024$ |
$2$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.15 |
16 |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x + 2$ |
$C_2^6.\SD_{16}$ (as 16T1284) |
$1024$ |
$2$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.16 |
16 |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 8 x + 2$ |
$C_2^6.\SD_{16}$ (as 16T1284) |
$1024$ |
$2$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.17 |
16 |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{5} + 8 x + 2$ |
$(D_4\times C_2^3).Q_{16}$ (as 16T1255) |
$1024$ |
$2$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.18 |
16 |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{5} + 8 x + 2$ |
$(D_4\times C_2^3).Q_{16}$ (as 16T1255) |
$1024$ |
$2$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.19 |
16 |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x^{5} + 8 x + 2$ |
$(D_4\times C_2^3).Q_{16}$ (as 16T1255) |
$1024$ |
$2$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.20 |
16 |
$x^{16} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 8 x^{5} + 8 x + 2$ |
$(D_4\times C_2^3).Q_{16}$ (as 16T1255) |
$1024$ |
$2$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.21 |
4 |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 2$ |
$C_2^4.D_4$ (as 16T297) |
$128$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,\frac{5}{2}]^{4}$ |
$[3]^{4}$ |
$[2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.22 |
8 |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 2$ |
$C_2^4.D_4$ (as 16T254) |
$128$ |
$4$ |
$[2, 2, 2, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,\frac{5}{2}]^{4}$ |
$[3]^{4}$ |
$[2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.23 |
8 |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 2$ |
$C_2^4.D_4$ (as 16T254) |
$128$ |
$4$ |
$[2, 2, 2, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,\frac{5}{2}]^{4}$ |
$[3]^{4}$ |
$[2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.24 |
8 |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{5} + 2$ |
$C_4^2.D_4$ (as 16T398) |
$128$ |
$4$ |
$[2, 2, 2, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,\frac{5}{2}]^{4}$ |
$[3]^{4}$ |
$[2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.25 |
8 |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{5} + 2$ |
$C_4^2.D_4$ (as 16T398) |
$128$ |
$4$ |
$[2, 2, 2, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,\frac{5}{2}]^{4}$ |
$[3]^{4}$ |
$[2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.26 |
4 |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x^{5} + 2$ |
$C_4^2.D_4$ (as 16T387) |
$128$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,\frac{5}{2}]^{4}$ |
$[3]^{4}$ |
$[2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.27 |
4 |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{3} + 2$ |
$C_2^4.D_4$ (as 16T319) |
$128$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,\frac{5}{2}]^{4}$ |
$[3]^{4}$ |
$[2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.28 |
8 |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x^{3} + 2$ |
$C_2^4.D_4$ (as 16T230) |
$128$ |
$4$ |
$[2, 2, 2, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,\frac{5}{2}]^{4}$ |
$[3]^{4}$ |
$[2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.29 |
8 |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 8 x^{3} + 2$ |
$C_2^4.D_4$ (as 16T230) |
$128$ |
$4$ |
$[2, 2, 2, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,\frac{5}{2}]^{4}$ |
$[3]^{4}$ |
$[2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.30 |
8 |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{5} + 8 x^{3} + 2$ |
$C_4^2.D_4$ (as 16T397) |
$128$ |
$4$ |
$[2, 2, 2, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,\frac{5}{2}]^{4}$ |
$[3]^{4}$ |
$[2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.31 |
8 |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{5} + 8 x^{3} + 2$ |
$C_4^2.D_4$ (as 16T397) |
$128$ |
$4$ |
$[2, 2, 2, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,\frac{5}{2}]^{4}$ |
$[3]^{4}$ |
$[2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.32 |
4 |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x^{5} + 8 x^{3} + 2$ |
$C_4^2.D_4$ (as 16T361) |
$128$ |
$2$ |
$[2, 2, 2, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,\frac{5}{2}]^{4}$ |
$[3]^{4}$ |
$[2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.33 |
16 |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x + 2$ |
$C_2^6.\SD_{16}$ (as 16T1284) |
$1024$ |
$2$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.34 |
16 |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x + 2$ |
$C_2^6.\SD_{16}$ (as 16T1284) |
$1024$ |
$2$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.35 |
16 |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x + 2$ |
$C_2^6.\SD_{16}$ (as 16T1284) |
$1024$ |
$2$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.36 |
16 |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 8 x + 2$ |
$C_2^6.\SD_{16}$ (as 16T1284) |
$1024$ |
$2$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.37 |
16 |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{5} + 8 x + 2$ |
$(D_4\times C_2^3).Q_{16}$ (as 16T1255) |
$1024$ |
$2$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.38 |
16 |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{5} + 8 x + 2$ |
$(D_4\times C_2^3).Q_{16}$ (as 16T1255) |
$1024$ |
$2$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.39 |
16 |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x^{5} + 8 x + 2$ |
$(D_4\times C_2^3).Q_{16}$ (as 16T1255) |
$1024$ |
$2$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.40 |
16 |
$x^{16} + 4 x^{15} + 2 x^{14} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 8 x^{5} + 8 x + 2$ |
$(D_4\times C_2^3).Q_{16}$ (as 16T1255) |
$1024$ |
$2$ |
$[2, 2, 2, 2, \frac{5}{2}, \frac{5}{2}, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,\frac{3}{2},\frac{3}{2},2,\frac{5}{2}]^{4}$ |
$[2,3,\frac{5}{2},\frac{5}{2}]_{4}$ |
$[1,2,\frac{3}{2},\frac{3}{2}]_{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.41 |
16 |
$x^{16} + 2 x^{14} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 2$ |
$C_2^6.\SD_{16}$ (as 16T1284) |
$1024$ |
$2$ |
$[2, 2, 2, 2, 3, 3, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,2,2,2,\frac{5}{2}]^{4}$ |
$[2,3,3,3]_{4}$ |
$[1,2,2,2]_{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.42 |
16 |
$x^{16} + 2 x^{14} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 2$ |
$C_2^6.\SD_{16}$ (as 16T1284) |
$1024$ |
$2$ |
$[2, 2, 2, 2, 3, 3, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,2,2,2,\frac{5}{2}]^{4}$ |
$[2,3,3,3]_{4}$ |
$[1,2,2,2]_{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.43 |
16 |
$x^{16} + 2 x^{14} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 2$ |
$C_2^6.\SD_{16}$ (as 16T1284) |
$1024$ |
$2$ |
$[2, 2, 2, 2, 3, 3, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,2,2,2,\frac{5}{2}]^{4}$ |
$[2,3,3,3]_{4}$ |
$[1,2,2,2]_{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.44 |
16 |
$x^{16} + 2 x^{14} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 2$ |
$C_2^6.\SD_{16}$ (as 16T1284) |
$1024$ |
$2$ |
$[2, 2, 2, 2, 3, 3, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,2,2,2,\frac{5}{2}]^{4}$ |
$[2,3,3,3]_{4}$ |
$[1,2,2,2]_{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.45 |
16 |
$x^{16} + 2 x^{14} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{5} + 2$ |
$(D_4\times C_2^3).Q_{16}$ (as 16T1255) |
$1024$ |
$2$ |
$[2, 2, 2, 2, 3, 3, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,2,2,2,\frac{5}{2}]^{4}$ |
$[2,3,3,3]_{4}$ |
$[1,2,2,2]_{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.46 |
16 |
$x^{16} + 2 x^{14} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{5} + 2$ |
$(D_4\times C_2^3).Q_{16}$ (as 16T1255) |
$1024$ |
$2$ |
$[2, 2, 2, 2, 3, 3, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,2,2,2,\frac{5}{2}]^{4}$ |
$[2,3,3,3]_{4}$ |
$[1,2,2,2]_{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.47 |
16 |
$x^{16} + 2 x^{14} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x^{7} + 8 x^{5} + 2$ |
$(D_4\times C_2^3).Q_{16}$ (as 16T1255) |
$1024$ |
$2$ |
$[2, 2, 2, 2, 3, 3, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,2,2,2,\frac{5}{2}]^{4}$ |
$[2,3,3,3]_{4}$ |
$[1,2,2,2]_{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.48 |
16 |
$x^{16} + 2 x^{14} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x^{7} + 8 x^{5} + 2$ |
$(D_4\times C_2^3).Q_{16}$ (as 16T1255) |
$1024$ |
$2$ |
$[2, 2, 2, 2, 3, 3, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,1,2,2,2,\frac{5}{2}]^{4}$ |
$[2,3,3,3]_{4}$ |
$[1,2,2,2]_{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.49 |
16 |
$x^{16} + 2 x^{14} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 2 x^{8} + 8 x + 2$ |
$D_4:C_2^3.D_4$ (as 16T918) |
$512$ |
$2$ |
$[2, 2, 2, 3, 3, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,2,2,\frac{5}{2}]^{4}$ |
$[3,3,3]^{4}$ |
$[2,2,2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |
2.1.16.42b4.50 |
16 |
$x^{16} + 2 x^{14} + 4 x^{13} + 2 x^{12} + 4 x^{11} + 10 x^{8} + 8 x + 2$ |
$D_4:C_2^3.D_4$ (as 16T918) |
$512$ |
$2$ |
$[2, 2, 2, 3, 3, 3, \frac{7}{2}]^{4}$ |
$[1,1,1,2,2,2,\frac{5}{2}]^{4}$ |
$[3,3,3]^{4}$ |
$[2,2,2]^{4}$ |
$[27, 14, 12, 8, 0]$ |
$[4, 1]$ |
$z^{14} + z^6 + z^2 + 1,z + 1$ |
$[1, 2, 7, 23, 39]$ |