Properties

Label 197.2.5.8a1.1-2.1.0a
Base 197.2.5.8a1.1
Degree \(2\)
e \(1\)
f \(2\)
c \(0\)

Related objects

Downloads

Learn more

Invariants

Residue field characteristic: $197$
Degree: $2$
Base field: 197.2.5.8a1.1
Ramification index $e$: $1$
Residue field degree $f$: $2$
Discriminant exponent $c$: $0$
Absolute Artin slopes: $[\ ]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $1$ (incomplete)
Ambiguity: $2$
Mass: $1$
Absolute Mass: $1/4$ ($1/20$ currently in the LMFDB)

Varying

The following invariants arise for fields within the LMFDB; since not all fields in this family are stored, it may be incomplete.

These invariants are all associated to absolute extensions of $\Q_{ 197 }$ within this relative family, not the relative extension.

Galois group: $F_5$ (incomplete)
Hidden Artin slopes: $[\ ]$ (incomplete)
Indices of inseparability: $[0]$
Associated inertia: $[1]$
Jump Set: undefined

Fields


Showing all 1

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
197.4.5.16a1.2 $( x^{4} + 16 x^{2} + 124 x + 2 )^{5} + 197$ $F_5$ (as 20T5) $20$ $20$ $[\ ]_{5}^{4}$ $[\ ]_{5}^{4}$ $[\ ]$ $[\ ]$ $[0]$ $[1]$ $z^4 + 5 z^3 + 10 z^2 + 10 z + 5$ undefined
  displayed columns for results