Properties

Label 197.2.2.2a1.1-1.3.2a
Base 197.2.2.2a1.1
Degree \(3\)
e \(3\)
f \(1\)
c \(2\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{3} + \pi$

Invariants

Residue field characteristic: $197$
Degree: $3$
Base field: 197.2.2.2a1.1
Ramification index $e$: $3$
Residue field degree $f$: $1$
Discriminant exponent $c$: $2$
Absolute Artin slopes: $[\ ]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $2$ (complete)
Ambiguity: $3$
Mass: $1$
Absolute Mass: $1/4$

Varying

These invariants are all associated to absolute extensions of $\Q_{ 197 }$ within this relative family, not the relative extension.

Galois group: $C_3 : C_4$ (show 1), $C_3\times (C_3 : C_4)$ (show 1)
Hidden Artin slopes: $[\ ]$ (show 1), $[\ ]^{3}$ (show 1)
Indices of inseparability: $[0]$
Associated inertia: $[1]$
Jump Set: undefined

Fields


Showing all 2

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
197.2.6.10a1.1 $( x^{2} + 192 x + 2 )^{6} + 197 x$ $C_3\times (C_3 : C_4)$ (as 12T19) $36$ $6$ $[\ ]_{6}^{6}$ $[\ ]_{6}^{6}$ $[\ ]^{3}$ $[\ ]^{3}$ $[0]$ $[1]$ $z^5 + 6 z^4 + 15 z^3 + 20 z^2 + 15 z + 6$ undefined
197.2.6.10a1.3 $( x^{2} + 192 x + 2 )^{6} + 4531 x + 36839$ $C_3 : C_4$ (as 12T5) $12$ $12$ $[\ ]_{6}^{2}$ $[\ ]_{6}^{2}$ $[\ ]$ $[\ ]$ $[0]$ $[1]$ $z^5 + 6 z^4 + 15 z^3 + 20 z^2 + 15 z + 6$ undefined
  displayed columns for results