Defining polynomial over unramified subextension
$x^{4} + 191d_{0}$ |
Invariants
Residue field characteristic: | $191$ |
Degree: | $16$ |
Base field: | $\Q_{191}$ |
Ramification index $e$: | $4$ |
Residue field degree $f$: | $4$ |
Discriminant exponent $c$: | $12$ |
Artin slopes: | $[\ ]$ |
Swan slopes: | $[\ ]$ |
Means: | $\langle\ \rangle$ |
Rams: | $(\ )$ |
Field count: | $3$ (complete) |
Ambiguity: | $16$ |
Mass: | $1$ |
Absolute Mass: | $1/4$ |
Varying
Indices of inseparability: | $[0]$ |
Associated inertia: | $[1]$ |
Jump Set: | undefined |
Galois groups and Hidden Artin slopes
Select desired size of Galois group.
Fields
Showing all 3
Download displayed columns for resultsLabel | Polynomial | Galois group | Galois degree | $\#\Aut(K/\Q_p)$ | Hidden Artin slopes | Ind. of Insep. | Assoc. Inertia | Jump Set |
---|---|---|---|---|---|---|---|---|
191.4.4.12a1.1 | $( x^{4} + 7 x^{2} + 100 x + 19 )^{4} + 191 x^{2}$ | $C_8: C_2$ (as 16T6) | $16$ | $16$ | $[\ ]$ | $[0]$ | $[1]$ | undefined |
191.4.4.12a1.2 | $( x^{4} + 7 x^{2} + 100 x + 19 )^{4} + 191 x$ | $C_{16} : C_2$ (as 16T22) | $32$ | $8$ | $[\ ]^{2}$ | $[0]$ | $[1]$ | undefined |
191.4.4.12a1.3 | $( x^{4} + 7 x^{2} + 100 x + 19 )^{4} + 191$ | $C_4:C_4$ (as 16T8) | $16$ | $16$ | $[\ ]$ | $[0]$ | $[1]$ | undefined |