Properties

Label 191.4.4.12a
Base 191.1.1.0a1.1
Degree \(16\)
e \(4\)
f \(4\)
c \(12\)

Related objects

Downloads

Learn more

Defining polynomial over unramified subextension

$x^{4} + 191d_{0}$

Invariants

Residue field characteristic: $191$
Degree: $16$
Base field: $\Q_{191}$
Ramification index $e$: $4$
Residue field degree $f$: $4$
Discriminant exponent $c$: $12$
Artin slopes: $[\ ]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $3$ (complete)
Ambiguity: $16$
Mass: $1$
Absolute Mass: $1/4$

Varying

Indices of inseparability: $[0]$
Associated inertia: $[1]$
Jump Set: undefined

Galois groups and Hidden Artin slopes

Select desired size of Galois group.

Fields


Showing all 3

  displayed columns for results
Label Packet size Polynomial Galois group Galois degree $\#\Aut(K/\Q_p)$ Artin slope content Swan slope content Hidden Artin slopes Hidden Swan slopes Ind. of Insep. Assoc. Inertia Resid. Poly Jump Set
191.4.4.12a1.1 $( x^{4} + 7 x^{2} + 100 x + 19 )^{4} + 191 x^{2}$ $C_8: C_2$ (as 16T6) $16$ $16$ $[\ ]_{4}^{4}$ $[\ ]_{4}^{4}$ $[\ ]$ $[\ ]$ $[0]$ $[1]$ $z^3 + 4 z^2 + 6 z + 4$ undefined
191.4.4.12a1.2 $( x^{4} + 7 x^{2} + 100 x + 19 )^{4} + 191 x$ $C_{16} : C_2$ (as 16T22) $32$ $8$ $[\ ]_{4}^{8}$ $[\ ]_{4}^{8}$ $[\ ]^{2}$ $[\ ]^{2}$ $[0]$ $[1]$ $z^3 + 4 z^2 + 6 z + 4$ undefined
191.4.4.12a1.3 $( x^{4} + 7 x^{2} + 100 x + 19 )^{4} + 191$ $C_4:C_4$ (as 16T8) $16$ $16$ $[\ ]_{4}^{4}$ $[\ ]_{4}^{4}$ $[\ ]$ $[\ ]$ $[0]$ $[1]$ $z^3 + 4 z^2 + 6 z + 4$ undefined
  displayed columns for results