Defining polynomial over unramified subextension
$x^{8} + 191d_{0}$ |
Invariants
Residue field characteristic: | $191$ |
Degree: | $16$ |
Base field: | $\Q_{191}$ |
Ramification index $e$: | $8$ |
Residue field degree $f$: | $2$ |
Discriminant exponent $c$: | $14$ |
Artin slopes: | $[\ ]$ |
Swan slopes: | $[\ ]$ |
Means: | $\langle\ \rangle$ |
Rams: | $(\ )$ |
Field count: | $5$ (complete) |
Ambiguity: | $16$ |
Mass: | $1$ |
Absolute Mass: | $1/2$ |
Varying
Indices of inseparability: | $[0]$ |
Associated inertia: | $[1]$ |
Jump Set: | undefined |
Galois groups and Hidden Artin slopes
Select desired size of Galois group.
Fields
Showing all 5
Download displayed columns for resultsLabel | Polynomial | Galois group | Galois degree | $\#\Aut(K/\Q_p)$ | Hidden Artin slopes | Ind. of Insep. | Assoc. Inertia | Jump Set |
---|---|---|---|---|---|---|---|---|
191.2.8.14a1.1 | $( x^{2} + 190 x + 19 )^{8} + 191 x$ | $C_8.C_8$ (as 16T124) | $64$ | $8$ | $[\ ]^{4}$ | $[0]$ | $[1]$ | undefined |
191.2.8.14a1.2 | $( x^{2} + 190 x + 19 )^{8} + 191$ | $D_{8}$ (as 16T13) | $16$ | $16$ | $[\ ]$ | $[0]$ | $[1]$ | undefined |
191.2.8.14a1.3 | $( x^{2} + 190 x + 19 )^{8} + 21774 x + 24830$ | $C_8.C_8$ (as 16T124) | $64$ | $8$ | $[\ ]^{4}$ | $[0]$ | $[1]$ | undefined |
191.2.8.14a1.4 | $( x^{2} + 190 x + 19 )^{8} + 29414 x + 28841$ | $Q_{16}$ (as 16T14) | $16$ | $16$ | $[\ ]$ | $[0]$ | $[1]$ | undefined |
191.2.8.14a1.5 | $( x^{2} + 190 x + 19 )^{8} + 191 x + 32852$ | $C_8.C_4$ (as 16T49) | $32$ | $8$ | $[\ ]^{2}$ | $[0]$ | $[1]$ | undefined |