Properties

Label 191.2.4.6a
Base 191.1.1.0a1.1
Degree \(8\)
e \(4\)
f \(2\)
c \(6\)

Related objects

Downloads

Learn more

Defining polynomial over unramified subextension

$x^{4} + 191d_{0}$

Invariants

Residue field characteristic: $191$
Degree: $8$
Base field: $\Q_{191}$
Ramification index $e$: $4$
Residue field degree $f$: $2$
Discriminant exponent $c$: $6$
Artin slopes: $[\ ]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $3$ (complete)
Ambiguity: $8$
Mass: $1$
Absolute Mass: $1/2$

Varying

Indices of inseparability: $[0]$
Associated inertia: $[1]$
Jump Set: undefined

Galois groups and Hidden Artin slopes

Select desired size of Galois group.

Fields


Showing all 3

  displayed columns for results
Label Packet size Polynomial Galois group Galois degree $\#\Aut(K/\Q_p)$ Artin slope content Swan slope content Hidden Artin slopes Hidden Swan slopes Ind. of Insep. Assoc. Inertia Resid. Poly Jump Set
191.2.4.6a1.1 $( x^{2} + 190 x + 19 )^{4} + 191 x$ $C_8:C_2$ (as 8T7) $16$ $4$ $[\ ]_{4}^{4}$ $[\ ]_{4}^{4}$ $[\ ]^{2}$ $[\ ]^{2}$ $[0]$ $[1]$ $z^3 + 4 z^2 + 6 z + 4$ undefined
191.2.4.6a1.2 $( x^{2} + 190 x + 19 )^{4} + 191$ $D_4$ (as 8T4) $8$ $8$ $[\ ]_{4}^{2}$ $[\ ]_{4}^{2}$ $[\ ]$ $[\ ]$ $[0]$ $[1]$ $z^3 + 4 z^2 + 6 z + 4$ undefined
191.2.4.6a1.3 $( x^{2} + 190 x + 19 )^{4} + 191 x + 32852$ $Q_8$ (as 8T5) $8$ $8$ $[\ ]_{4}^{2}$ $[\ ]_{4}^{2}$ $[\ ]$ $[\ ]$ $[0]$ $[1]$ $z^3 + 4 z^2 + 6 z + 4$ undefined
  displayed columns for results