Defining polynomial over unramified subextension
| $x^{4} + 191d_{0}$ |
Invariants
| Residue field characteristic: | $191$ |
| Degree: | $8$ |
| Base field: | $\Q_{191}$ |
| Ramification index $e$: | $4$ |
| Residue field degree $f$: | $2$ |
| Discriminant exponent $c$: | $6$ |
| Artin slopes: | $[\ ]$ |
| Swan slopes: | $[\ ]$ |
| Means: | $\langle\ \rangle$ |
| Rams: | $(\ )$ |
| Field count: | $3$ (complete) |
| Ambiguity: | $8$ |
| Mass: | $1$ |
| Absolute Mass: | $1/2$ |
Varying
| Indices of inseparability: | $[0]$ |
| Associated inertia: | $[1]$ |
| Jump Set: | undefined |
Galois groups and Hidden Artin slopes
Select desired size of Galois group.
Fields
Showing all 3
Download displayed columns for results| Label | Polynomial | Galois group | Galois degree | $\#\Aut(K/\Q_p)$ | Hidden Artin slopes | Ind. of Insep. | Assoc. Inertia | Jump Set |
|---|---|---|---|---|---|---|---|---|
| 191.2.4.6a1.1 | $( x^{2} + 190 x + 19 )^{4} + 191 x$ | $C_8:C_2$ (as 8T7) | $16$ | $4$ | $[\ ]^{2}$ | $[0]$ | $[1]$ | undefined |
| 191.2.4.6a1.2 | $( x^{2} + 190 x + 19 )^{4} + 191$ | $D_4$ (as 8T4) | $8$ | $8$ | $[\ ]$ | $[0]$ | $[1]$ | undefined |
| 191.2.4.6a1.3 | $( x^{2} + 190 x + 19 )^{4} + 191 x + 32852$ | $Q_8$ (as 8T5) | $8$ | $8$ | $[\ ]$ | $[0]$ | $[1]$ | undefined |