Properties

Label 191.2.1.0a1.1-1.3.2a
Base 191.2.1.0a1.1
Degree \(3\)
e \(3\)
f \(1\)
c \(2\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{3} + 191$

Invariants

Residue field characteristic: $191$
Degree: $3$
Base field: $\Q_{191}(\sqrt{7})$
Ramification index $e$: $3$
Residue field degree $f$: $1$
Discriminant exponent $c$: $2$
Absolute Artin slopes: $[\ ]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $2$ (complete)
Ambiguity: $3$
Mass: $1$
Absolute Mass: $1/2$

Varying

These invariants are all associated to absolute extensions of $\Q_{ 191 }$ within this relative family, not the relative extension.

Galois group: $S_3$ (show 1), $S_3\times C_3$ (show 1)
Hidden Artin slopes: $[\ ]$ (show 1), $[\ ]^{3}$ (show 1)
Indices of inseparability: $[0]$
Associated inertia: $[1]$
Jump Set: undefined

Fields


Showing all 2

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
191.2.3.4a1.1 $( x^{2} + 190 x + 19 )^{3} + 191 x$ $S_3\times C_3$ (as 6T5) $18$ $3$ $[\ ]_{3}^{6}$ $[\ ]_{3}^{6}$ $[\ ]^{3}$ $[\ ]^{3}$ $[0]$ $[1]$ $z^2 + 3 z + 3$ undefined
191.2.3.4a1.2 $( x^{2} + 190 x + 19 )^{3} + 191$ $S_3$ (as 6T2) $6$ $6$ $[\ ]_{3}^{2}$ $[\ ]_{3}^{2}$ $[\ ]$ $[\ ]$ $[0]$ $[1]$ $z^2 + 3 z + 3$ undefined
  displayed columns for results