Defining polynomial
| $x^{3} + 191$ |
Invariants
| Residue field characteristic: | $191$ |
| Degree: | $3$ |
| Base field: | $\Q_{191}(\sqrt{7})$ |
| Ramification index $e$: | $3$ |
| Residue field degree $f$: | $1$ |
| Discriminant exponent $c$: | $2$ |
| Absolute Artin slopes: | $[\ ]$ |
| Swan slopes: | $[\ ]$ |
| Means: | $\langle\ \rangle$ |
| Rams: | $(\ )$ |
| Field count: | $2$ (complete) |
| Ambiguity: | $3$ |
| Mass: | $1$ |
| Absolute Mass: | $1/2$ |
Varying
These invariants are all associated to absolute extensions of $\Q_{ 191 }$ within this relative family, not the relative extension.
| Galois group: | $S_3$ (show 1), $S_3\times C_3$ (show 1) |
| Hidden Artin slopes: | $[\ ]$ (show 1), $[\ ]^{3}$ (show 1) |
| Indices of inseparability: | $[0]$ |
| Associated inertia: | $[1]$ |
| Jump Set: | undefined |
Fields
Showing all 2
Download displayed columns for results| Label | Polynomial $/ \Q_p$ | Galois group $/ \Q_p$ | Galois degree $/ \Q_p$ | $\#\Aut(K/\Q_p)$ | Hidden Artin slopes $/ \Q_p$ | Ind. of Insep. $/ \Q_p$ | Assoc. Inertia $/ \Q_p$ | Jump Set |
|---|---|---|---|---|---|---|---|---|
| 191.2.3.4a1.1 | $( x^{2} + 190 x + 19 )^{3} + 191 x$ | $S_3\times C_3$ (as 6T5) | $18$ | $3$ | $[\ ]^{3}$ | $[0]$ | $[1]$ | undefined |
| 191.2.3.4a1.2 | $( x^{2} + 190 x + 19 )^{3} + 191$ | $S_3$ (as 6T2) | $6$ | $6$ | $[\ ]$ | $[0]$ | $[1]$ | undefined |