Properties

Label 181.1.2.1a1.1-9.1.0a
Base 181.1.2.1a1.1
Degree \(9\)
e \(1\)
f \(9\)
c \(0\)

Related objects

Downloads

Learn more

Invariants

Residue field characteristic: $181$
Degree: $9$
Base field: $\Q_{181}(\sqrt{181})$
Ramification index $e$: $1$
Residue field degree $f$: $9$
Discriminant exponent $c$: $0$
Absolute Artin slopes: $[\ ]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $1$ (complete)
Ambiguity: $9$
Mass: $1$
Absolute Mass: $1/18$

Varying

These invariants are all associated to absolute extensions of $\Q_{ 181 }$ within this relative family, not the relative extension.

Galois group: $C_{18}$
Hidden Artin slopes: $[\ ]$
Indices of inseparability: $[0]$
Associated inertia: $[1]$
Jump Set: undefined

Fields


Showing all 1

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
181.9.2.9a1.2 $( x^{9} + 11 x^{3} + 107 x^{2} + 168 x + 179 )^{2} + 181$ $C_{18}$ (as 18T1) $18$ $18$ $[\ ]_{2}^{9}$ $[\ ]_{2}^{9}$ $[\ ]$ $[\ ]$ $[0]$ $[1]$ $z + 2$ undefined
  displayed columns for results