Properties

Label 131.2.2.2a1.1-1.4.3a
Base 131.2.2.2a1.1
Degree \(4\)
e \(4\)
f \(1\)
c \(3\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{4} + d_{0} \pi$

Invariants

Residue field characteristic: $131$
Degree: $4$
Base field: 131.2.2.2a1.1
Ramification index $e$: $4$
Residue field degree $f$: $1$
Discriminant exponent $c$: $3$
Absolute Artin slopes: $[\ ]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $2$ (complete)
Ambiguity: $4$
Mass: $1$
Absolute Mass: $1/4$

Varying

These invariants are all associated to absolute extensions of $\Q_{ 131 }$ within this relative family, not the relative extension.

Galois group: $C_8.C_8$
Hidden Artin slopes: $[\ ]^{4}$
Indices of inseparability: $[0]$
Associated inertia: $[1]$
Jump Set: undefined

Fields


Showing all 2

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
131.2.8.14a1.1 $( x^{2} + 127 x + 2 )^{8} + 131 x$ $C_8.C_8$ (as 16T124) $64$ $8$ $[\ ]_{8}^{8}$ $[\ ]_{8}^{8}$ $[\ ]^{4}$ $[\ ]^{4}$ $[0]$ $[1]$ $z^7 + 8 z^6 + 28 z^5 + 56 z^4 + 70 z^3 + 56 z^2 + 28 z + 8$ undefined
131.2.8.14a1.3 $( x^{2} + 127 x + 2 )^{8} + 4323 x + 4585$ $C_8.C_8$ (as 16T124) $64$ $8$ $[\ ]_{8}^{8}$ $[\ ]_{8}^{8}$ $[\ ]^{4}$ $[\ ]^{4}$ $[0]$ $[1]$ $z^7 + 8 z^6 + 28 z^5 + 56 z^4 + 70 z^3 + 56 z^2 + 28 z + 8$ undefined
  displayed columns for results