Defining polynomial
| $x^{4} + d_{0} \pi$ |
Invariants
| Residue field characteristic: | $131$ |
| Degree: | $4$ |
| Base field: | 131.2.2.2a1.1 |
| Ramification index $e$: | $4$ |
| Residue field degree $f$: | $1$ |
| Discriminant exponent $c$: | $3$ |
| Absolute Artin slopes: | $[\ ]$ |
| Swan slopes: | $[\ ]$ |
| Means: | $\langle\ \rangle$ |
| Rams: | $(\ )$ |
| Field count: | $2$ (complete) |
| Ambiguity: | $4$ |
| Mass: | $1$ |
| Absolute Mass: | $1/4$ |
Varying
These invariants are all associated to absolute extensions of $\Q_{ 131 }$ within this relative family, not the relative extension.
| Galois group: | $C_8.C_8$ |
| Hidden Artin slopes: | $[\ ]^{4}$ |
| Indices of inseparability: | $[0]$ |
| Associated inertia: | $[1]$ |
| Jump Set: | undefined |
Fields
Showing all 2
Download displayed columns for results| Label | Polynomial $/ \Q_p$ | Galois group $/ \Q_p$ | Galois degree $/ \Q_p$ | $\#\Aut(K/\Q_p)$ | Hidden Artin slopes $/ \Q_p$ | Ind. of Insep. $/ \Q_p$ | Assoc. Inertia $/ \Q_p$ | Jump Set |
|---|---|---|---|---|---|---|---|---|
| 131.2.8.14a1.1 | $( x^{2} + 127 x + 2 )^{8} + 131 x$ | $C_8.C_8$ (as 16T124) | $64$ | $8$ | $[\ ]^{4}$ | $[0]$ | $[1]$ | undefined |
| 131.2.8.14a1.3 | $( x^{2} + 127 x + 2 )^{8} + 4323 x + 4585$ | $C_8.C_8$ (as 16T124) | $64$ | $8$ | $[\ ]^{4}$ | $[0]$ | $[1]$ | undefined |